Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T05:14:02.138Z Has data issue: false hasContentIssue false

The long-term corrosion of mild steel in depassivated concrete: Localizing the oxygen reduction sites in corrosion products by isotopic tracer method

Published online by Cambridge University Press:  12 December 2011

Emilien Burger*
Affiliation:
CEA, SIS2M, LAPA, CNRS UMR3299, F-91191 Gif Sur Yvette, France CEA, DEN, DPC, SCCME, F-91191 Gif Sur Yvette, France
Judith Monnier
Affiliation:
Institut de Chimie et des Matériaux Paris-Est, Université Paris-Est Créteil, UMR 7182, F-94320 Thiais, France
Pascal Berger
Affiliation:
CEA, SIS2M, LEEL, CEA Saclay F-91191 Gif-sur-Yvette, France
Delphine Neff
Affiliation:
CEA, SIS2M, LAPA, CNRS UMR3299, F-91191 Gif Sur Yvette, France
Valérie L’Hostis
Affiliation:
CEA, DEN, DPC, SCCME, F-91191 Gif Sur Yvette, France
Stéphanie Perrin
Affiliation:
CEA, DEN, DPC, SCCME, F-91191 Gif Sur Yvette, France
Philippe Dillmann
Affiliation:
CEA, SIS2M, LAPA, CNRS UMR3299, F-91191 Gif Sur Yvette, France LMC IRAMAT CNRS UMR5060 CNRS, France
*
a)Address all correspondence to this author. e-mail: em.burger@laposte.net
Get access

Abstract

Over a long period (>10 years), the prediction of iron/mild steel corrosion in concrete requires the use of a mechanistic approach. For that purpose, a key point of the mechanisms involved is the localization of the oxygen reduction sites within the thick corrosion layers, which may greatly influence the nature of the rate-limiting step. In this context, iron rebars (originally covered with concrete) were sampled from a 50-year-old historical building and submitted to isotopic tracers methods (18O) combined with structural Raman microspectroscopy analyses on transverse sections. By this method, the authors demonstrate that the oxygen reduction sites are strongly impacted by the presence of a conductive phase (magnetite) in contact with the metallic substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Feron, D. and Macdonald, D.D.: Prediction of Long Term Corrosion Behaviour in Nuclear Waste Systems, edited by EFC Series, Vol. 36 (Maney Publishing, London, 2001).Google Scholar
2.Cattant, F., Crusset, D., and Feron, D.: Corrosion issues in nuclear industry today. Mater. Today 11, 32 (2008).CrossRefGoogle Scholar
3.L’hostis, V., Foct, F., and Dillmann, P.: Corrosion behaviour of reinforced concrete: Laboratory experiments and archaeological analogues for long-term predictive modeling. J. Nucl. Mater. 379(1–3), 124 (2008).CrossRefGoogle Scholar
4.Molina, F.J., Alonso, C., and Andrade, C.: Cover cracking as a function of bar corrosion: Part II—Numerical model. Mater. Struct. 26, 532 (1993).CrossRefGoogle Scholar
5.Scott, D.A. and Eggert, G.: Iron and Steel in Art: Corrosion, Colorants, Conservation (Archetype Publications, London, 2009).Google Scholar
6.Suda, K., Misra, S., and Motohashi, K.: Corrosion product of reinforcing bars embedded in concrete. Corros. Sci. 35, 1543 (1993).CrossRefGoogle Scholar
7.Joiret, S., Keddam, M., Novoa, X.R., Perez, M.C., Rangell, C., and Takenouti, H.: Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH. Cem. Concr. Compos. 24, 7 (2002).CrossRefGoogle Scholar
8.Duffo, G.S., Morris, W., Raspini, I., and Saragovi, C.: A study of steel rebars embedded in concrete during 65 years. Corros. Sci. 46, 2143 (2004).CrossRefGoogle Scholar
9.Larroumet, D., Greenfield, D., Akid, R., and Yarwood, J.: Raman spectroscopic studies of the corrosion of model iron electrodes in sodium chloride solution. J. Raman Spectrosc. 38, 1577 (2007).CrossRefGoogle Scholar
10.L’Hostis, V., Neff, D., Bellot-Gurlet, L., and Dillmann, P.: Characterization of long-term corrosion of rebars embedded in concretes sampled on French historical buildings aged from 50 to 80 years. Mater. Corros. 60(2), 93 (2009).CrossRefGoogle Scholar
11.Graedel, T.E. and Frankenthal, R.P.: Corrosion mechanisms for iron and low alloy steels exposed to the atmosphere. J. Electrochem. Soc. 137, 2385 (1990).CrossRefGoogle Scholar
12.Leygraf, C. and Graedel, T.E.: Atmospheric Corrosion (John Wiley & Sons, New York, 2000).Google Scholar
13.Chitty, W.J., Berger, P., Dillmann, P., and L’Hostis, V.: Long-term corrosion of rebars embedded in aerial and hydraulic binders—Mechanisms and crucial physico-chemical parameters. Corros. Sci. 50, 2117 (2008).CrossRefGoogle Scholar
14.Gonzáles, J.A., Molina, A., Otero, E., and López, W.: On the mechanism of steel corrosion in concrete: The role of oxygen diffusion. Mag. Concr. Res. 42, 23 (1990).CrossRefGoogle Scholar
15.Evans, U.R.: Electrochemical mechanism of atmospheric rusting. Nature 206(4988), 980 (1965).CrossRefGoogle Scholar
16.Evans, U.R. and Taylor, C.A.J.: Mechanism of atmospheric rusting. Corros. Sci. 12, 227 (1972).CrossRefGoogle Scholar
17.Stratmann, M.: The atmospheric corrosion of iron and steel. Metallurgica I Odlewnictwo 16, 46 (1990).Google Scholar
18.Stratmann, M.: The atmospheric corrosion of iron—a discussion of the physicochemical fundamentals of this omnipresent corrosion process. Invited review. Ber. Bunsen ges. Phys. Chem. 94, 626 (1990).CrossRefGoogle Scholar
19.Strattmann, M. and Streckel, H.: On the atmospheric corrosion of metals which are covered with thin electrolyte layers, part-I: verification of the experimental technique. Corros. Sci. 30, 681 (1990).CrossRefGoogle Scholar
20.Misawa, T., Hashimoto, K., and Shimodaira, S.: The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature. Corros. Sci. 14, 131 (1974).CrossRefGoogle Scholar
21.Misawa, T., Asami, K., Hashimoto, K., and Shimodaira, S.: The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel. Corros. Sci. 14, 289 (1974).CrossRefGoogle Scholar
22.Yamashita, M., Miyuki, H., Matsuda, Y., Nagano, H., and Misawa, T.: The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century. Corros. Sci. 36, 283 (1994).CrossRefGoogle Scholar
23.Demoulin, A., Trigance, C., Neff, D., Foy, E., Dillmann, P., and L’Hostis, V.: The evolution of the corrosion of iron in hydraulic binders analysed from 46-and 260-year-old buildings. Corros. Sci. 52(10), 3168 (2010).CrossRefGoogle Scholar
24.Vega, E., Berger, P., and Dillmann, P.: A study of transport phenomena in the corrosion products of ferrous archaeological artefacts using 18O tracing and nuclear microprobe analysis. Nucl. Instrum. Methods Phys. Res., Sect. B 240, 554 (2005).CrossRefGoogle Scholar
25.Monnier, J., Burger, E., Berger, P., Neff, D., Guillot, I., and Dillmann, P.: Localization of oxygen reduction sites in the case of iron long term atmospheric corrosion. Corros. Sci. 53, 2468 (2011).CrossRefGoogle Scholar
26.Réguer, S., Dillmann, P., and Mirambet, F.: Buried iron archaeological artefacts: Corrosion mechanisms related to the presence of Cl-containing phases. Corros. Sci. 49, 2726 (2007).CrossRefGoogle Scholar
27.Antony, H., Perrin, S., Dillmann, P., Legrand, L., and Chaussé, A.: Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artefacts. Electrochim. Acta 52, 7754 (2007).CrossRefGoogle Scholar
28.Antony, H., Legrand, L., Marechal, L., Perrin, S., Dillmann, P., and Chaussé, A.: Study of lepidocrocite electrochemical reduction in neutral and slightly alkaline solutions at 25°C. Electrochim. Acta 51(4), 745 (2005).CrossRefGoogle Scholar
29.Suzuki, I., Masuko, N., and Hisamatsu, Y.: Electrochemical properties of iron rust. Corros. Sci. 19, 521 (1979).CrossRefGoogle Scholar
30.Cox, A. and Lyon, S.B.: An electrochemical study of the atmospheric corrosion of mild steel—I. Experimental method. Corros. Sci. 36(7), 1167 (1994).CrossRefGoogle Scholar
31.Leidheiser, H. and Music, S.: The atmospheric corrosion of iron as studied by Mössbauer spectroscopy. Corros. Sci. 22(12), 1089 (1982).CrossRefGoogle Scholar
32.Keiser, J.T., Brown, C.W., and Heidersbach, R.H.: Characterization of the passive film formed ion weathering steels. Corros. Sci. 23(3), 251 (1983).CrossRefGoogle Scholar
33.Leidheiser, H. and Czako-Nagy, I.: A Mössbauer spectroscopic study of rust formed during simulated atmospheric corrosion. Corros. Sci. 24, 569 (1984).CrossRefGoogle Scholar
34.Oh, S.J., Cook, D.C., and Townsend, H.E.: Characterization of iron oxides commonly formed as corrosion products of steel. Hyperfine Interact. 112, 59 (1998).CrossRefGoogle Scholar
35.Oh, S.J., Cook, D.C., and Townsend, H.E.: Atmospheric corrosion of different steels in marine, rural and industrial environments. Corros. Sci. 41, 1687 (1999).CrossRefGoogle Scholar
36.Saito, M., Suzuki, S., Kimura, M., Suzuki, T., Kihira, H., and Waseda, Y.: Quantitative characterization of the atomic-scale structure of oxyhydroxides in rusts formed on steel surfaces. Mater. Charact. 55, 288 (2005).CrossRefGoogle Scholar
37.García, K.E., Barrero, C.A., Morales, A.L., and Greneche, G.M.: Lost iron and iron converted into rust in steels submitted to dry–wet corrosion process. Corros. Sci. 50(3), 763 (2008).CrossRefGoogle Scholar
38.Monnier, J., Neff, D., Réguer, S., Dillmann, P., Bellot-Gurlet, L., Leroy, E., Foy, E., Legrand, L., and Guillot, I.: A corrosion study of the ferrous medieval reinforcement of the Amiens cathedral. Phase characterisation and localisation by various microprobes techniques. Corros. Sci. 52, 695 (2010).CrossRefGoogle Scholar
39.de la Fuente, D., Díaz, I., Simancas, J., Chico, B., and Morcillo, M.: Long-term atmospheric corrosion of mild steel. Corros. Sci. 53(2), 604 (2011).CrossRefGoogle Scholar
40.Knowles, P.R.: Design of structural steelwork, 2nd ed. (Taylor & Francis, 1987).CrossRefGoogle Scholar
41.Khodja, H., Berthoumieux, E., Daudin, L., and Gallien, J.P.: The Pierre Süe Laboratory nuclear microprobe as a multi-disciplinary analysis tool. Nucl. Instrum. Methods Phys. Res., Sect B 181, 83 (2001).CrossRefGoogle Scholar
42.Amsel, G. and Samuel, D.: Microanalysis of the stable isotopes of oxygen by means of nuclear reactions. Anal. Chem. 39, 1689 (1967).CrossRefGoogle Scholar
43.Pascal, P.: Nouveau traité de chimie minérale, Tome XVII(1) (Masson, Paris, 1967).Google Scholar
44.Yanagihara, H., Hasegawa, M., Kita, E., Wakabayashi, Y., Sawa, H., and Siratori, K.: Iron vacancy ordered γ-Fe2O3(001) epitaxial films: The crystal structure and electrical resistivity. J. Phys. Soc. Jpn. 75(5), 054708 (2006).CrossRefGoogle Scholar
45.Chikazumi, S. and Charap, S.H.: Physics of Magnetism (Wiley, New York, 1964).Google Scholar
46.Guskos, N., Papadopoulos, G.J., Likodimos, V., Patapis, S., Yarmis, D., Przepiera, A., Przepiera, K., Majszczyk, J., Typek, J., Wabia, M., Aidinis, K., and Drazek, Z.: Photoacoustic, EPR and electrical conductivity investigations of three synthetic mineral pigments: Hematite, goethite and magnetite. Mater. Res. Bull. 37, 1051 (2002).CrossRefGoogle Scholar
47.Burger, E., Legrand, L., Neff, D., Faiz, H., Perrin, S., L’Hostis, V., and Dillmann, P.: In situ structural characterisation of non-stable phases involved in atmospheric corrosion of ferrous heritage artefacts. Corros. Eng. Sci. Technol. 45(5), 395 (2010).CrossRefGoogle Scholar
48.Gonzalez, J.A., Miranda, J.M., Otero, E., and Feliu, S.: Effect of electrochemically reactive rust layers on the corrosion of steel in a Ca(OH)2 solution. Corros. Sci. 49, 436 (2007).CrossRefGoogle Scholar
49.Pourbaix, M.: Leçons en corrosion électrochimique, 2nd éd. (Cebelcor, Bruxelles, 1975).Google Scholar
50.Cornell, R. and Schwertmann, U.: The iron oxides—Structure, Properties, Occurrences and Uses, 2nd ed. (Wiley-VCH Verlag, Weinheim, 2003).CrossRefGoogle Scholar
51.Schwertmann, U.: Solubility and dissolution of iron oxides. Plant Soil 130, 1 (1991).CrossRefGoogle Scholar
52.Dünnwald, J. and Otto, A.: An investigation of phase transitions in rust layers using Raman spectroscopy. Corros. Sci. 29, 1167 (1989).CrossRefGoogle Scholar
53.Monnier, J., Réguer, S., Vantelon, D., Dillmann, P.Neff, D.,·and Guillot, I.: X-rays absorption study on medieval corrosion layers for the understanding of very long-term indoor atmospheric iron corrosion. Appl. Phys., A 99, 399 (2010).CrossRefGoogle Scholar