Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-01T08:31:27.288Z Has data issue: false hasContentIssue false

Local temperature rises during mechanical testing of metallic glasses

Published online by Cambridge University Press:  03 March 2011

Y. Zhang
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, United Kingdom
N.A. Stelmashenko
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, United Kingdom
Z.H. Barber
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, United Kingdom
W.H. Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing, 100080, People’s Republic of China
J.J. Lewandowski
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
A.L. Greer*
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, United Kingdom
*
b) Address all correspondence to this author. e-mail: alg13@cam.ac.uk
Get access

Abstract

Under ambient conditions, plastic flow in metallic glasses is sharply localized into shear bands. The heat content of, and consequent temperature rise at, shear bands in three bulk metallic glasses are compared using a recently reported fusible coating method. The minimum shear offsets necessary to detect local heating are determined. It is shown that the dependence of heat content on offset is consistent with frictional heating in the band. The effective stress on the band undergoing shear is 50–70% of the macroscopic shear stress, a ratio compared with simulations of shear-band initiation and operation. It is also noted that frictional heating can occur not only at shear bands, but also at mixed-mode cracks.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 (1999).Google Scholar
2Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).Google Scholar
3Wang, W-H., Dong, C., and Shek, C-H.: Bulk metallic glasses. Mater. Sci. Eng. R 44, 45 (2004).Google Scholar
4Ashby, M.F. and Greer, A.L.: Metallic glasses as structural materials. Scripta Mater. 54, 321 (2006).Google Scholar
5Lewandowski, J.J., Wang, W-H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).Google Scholar
6Donovan, P.E. and Stobbs, W.M.: The structure of shear bands in metallic glasses. Acta Metall. 29, 1419 (1981).Google Scholar
7Zhang, Y. and Greer, A.L.: Thickness of shear bands in metallic glasses. Appl. Phys. Lett. 89, 071907 (2006).CrossRefGoogle Scholar
8Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
9Bei, H., Xie, S., and George, E.P.: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006).CrossRefGoogle Scholar
10Lewandowski, J.J. and Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).Google Scholar
11Dai, L.H., Yan, M., Liu, L.F., and Bai, Y.L.: Adiabatic shear banding instability in bulk metallic glasses. Appl. Phys. Lett. 87, 141916 (2005).Google Scholar
12Yang, B., Liaw, P.K., Wang, G., Morrison, M., Liu, C.T., Buchanan, R.A., and Yokoyama, Y.: In-situ thermographic observation of mechanical damage in bulk-metallic glasses during fatigue and tensile experiments. Intermetallics 12, 1265 (2004).CrossRefGoogle Scholar
13Yang, B., Morrison, M.L., Liaw, P.K., Buchanan, R.A., Wang, G., Liu, C.T., and Denda, M.: Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl. Phys. Lett. 86, 141904 (2005).CrossRefGoogle Scholar
14Hufnagel, T.C., Jiao, T., Li, Y., Xing, L-Q., and Ramesh, K.T.: Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res. 17, 1441 (2002).Google Scholar
15Lee, M.H. and Sordelet, D.J.: Evidence for adiabatic heating during fracture of W-reinforced metallic glass composites. Appl. Phys. Lett. 88, 261902 (2006).CrossRefGoogle Scholar
16Gilbert, C.J., Ager, J.W., Schroeder, V., Ritchie, R.O., Lloyd, J.P., and Graham, J.R.: Light emission during fracture of a Zr–Ti– Ni–Cu–Be bulk metallic glass. Appl. Phys. Lett. 74, 3809 (1999).Google Scholar
17Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y., and Lewandowski, J.J.: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).Google Scholar
18Conner, R.D., Johnson, W.L., Paton, N.E., and Nix, W.D.: Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, 904 (2003).Google Scholar
19Zhang, Y., Wang, W.H., and Greer, A.L.: Making metallic glasses plastic by control of residual stress. Nat. Mater. 5, 857 (2006).CrossRefGoogle ScholarPubMed
20Yamasaki, M., Kagao, S., and Kawamura, Y.: Thermal diffusivity and conductivity of supercooled liquid in Zr41Ti14Cu12Ni10Be23 metallic glass. Appl. Phys. Lett. 84, 4654 (2004).CrossRefGoogle Scholar
21Johnson, W.L. and Samwer, K.: A universal criterion for plastic yielding of metallic glasses with a ( T /T g)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).Google Scholar
22Yu, P., Bai, H.Y., Tang, M.B., and Wang, W.L.: Excellent glass-forming ability in simple Cu50Zr50-based alloys. J. Non-Cryst. Solids 351, 1328 (2005).Google Scholar
23Choy, C.L., Tong, K.W., Wong, H.K., and Leung, W.P.: Thermal conductivity of amorphous alloys above room temperature. J. Appl. Phys. 70, 4919 (1991).CrossRefGoogle Scholar
24Yamasaki, M., Kagao, S., and Kawamura, Y.: Thermal diffusivity and conductivity of Zr55Al10Ni5Cu30 bulk metallic glass. Scripta Mater. 53, 63 (2005).Google Scholar
25Flores, K.M. and Dauskardt, R.H.: Local heating associated with crack tip plasticity in Zr–Ti–Ni–Cu–Be bulk amorphous metals. J. Mater. Res. 14, 638 (1999).CrossRefGoogle Scholar
26Lu, J., Ravichandran, G., and Johnson, W.L.: Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429 (2003).Google Scholar
27Huang, R., Suo, Z., Prevost, J.H., and Nix, W.D.: Inhomogeneous deformation in metallic glasses. J. Mech. Phys. Solids 50, 1011 (2002).Google Scholar
28Bailey, N.P., Schiøtz, J., and Jacobsen, K.W.: Atomistic simulation study of the shear-band deformation in Mg–Cu metallic glasses. Phys. Rev. B 73, 064108 (2006).Google Scholar
29Li, Q-K. and Li, M.: Atomic scale characterization of shear bands in an amorphous metal. Appl. Phys. Lett. 88, 241903 (2006).Google Scholar