Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T14:11:35.678Z Has data issue: false hasContentIssue false

Local equilibrium phase diagrams: SiC deposition in a hot wall LPCVD reactor

Published online by Cambridge University Press:  03 March 2011

Chien C. Chiu
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State Univers ity, Blacksburg, Virginia 24061–0237
Seshu B. Desu*
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State Univers ity, Blacksburg, Virginia 24061–0237
Zhi J. Chen
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State Univers ity, Blacksburg, Virginia 24061–0237
Ching Yi Tsai
Affiliation:
Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061–0219
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Traditional CVD phase diagrams, which neglect the depletion effects in a hot wall reactor and assume the gaseous species concentrations at the substrate are the same as input concentrations, are at best valid for a cold wall reactor. Due to the constant change of gaseous species concentration along the length of the reactor, traditional CVD phase diagrams do not accurately predict the phases in the deposit on the substrate in a hot wall CVD system. In this paper, a new approach to calculate the local equilibrium CVD phase diagrams at the substrate is presented by coupling the depletion effects in a hot wall reactor to the equilibrium thermodynamic computer codes solgasmix-pv. The deposition of SiC using the gas system of methyltrichlorosilane (MTS)-hydrogen (H2) under low pressure was chosen for this study. Differences between the new CVD phase diagrams and the traditional phase diagrams for this gas system are discussed. The calculated CVD phase diagrams are also compared with the experimental data both from our own experiment and from the literature. The local equilibrium phase diagrams predicted the deposition of a single phase of SiC much better than those without the consideration of the depletion effects. The experimental regions for depositing single phase SiC are larger than the calculated local phase diagrams. This is attributed to the higher linear velocity of the gas flux under low pressure and the polarity of the Si carrying intermediate species.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Langlais, F., Hottier, F., and Cadoret, R., J. Cryst. Growth 56, 659672 (1982).CrossRefGoogle Scholar
2Fischman, G. S. and Petuskey, W. T., J. Am. Ceram. Soc. 68 (4), 185190 (1985).CrossRefGoogle Scholar
3Kingon, A. I., Lutz, L. J., Liaw, P., and Davis, R. F., J. Am. Ceram. Soc. 66 (8), 558566 (1983).CrossRefGoogle Scholar
4Minato, K. and Fukuda, K., J. Nucl. Mater. 149, 233246 (1987).CrossRefGoogle Scholar
5Gökoğlu, S. A., in Chemical Vapor Deposition of Refractory Metals and Ceramics II, edited by Besmann, T. M., Gallois, B. M., and Warren, J. (Mater. Res. Soc. Symp. Proc. 250, Pittsburgh, PA, 1992), p. 18.Google Scholar
6Langlais, F., Prebende, C., Tarride, B., and Naslain, R., J. de Physique, Colloque c5, supplément au n° 5, Tome 50, C5-93C5-103 (1989).Google Scholar
7Neuschiitz, D. and Salehomoum, F., in Chemical Vapor Deposition of Refractory Metals and Ceramics II, edited by Besmann, T. M., Gallois, B. M., and Warren, J. (Mater. Res. Soc. Symp. Proc. 250, Pittsburgh, PA, 1992), p. 41.Google Scholar
8Langlais, F. and Prebende, C., in Proc. 11th Int. Conf. on CVD, edited by Spear, K. E. and Cullen, G. W. (The Electrochemical Society, Pennington, NJ, 1990), p. 686.Google Scholar
9Gökoğlu, S. A. and Kuczmarski, M. A., in Proc. 12th Int. Symp. on Chemical Vapor Deposition 1993, edited by Jensen, K. F. and Cullen, G. W. (The Electrochemical Society, Pennington, NJ, Proc. vol. 93–2), p. 392.Google Scholar
10Schlichting, J., Powd. Metall. Int. 12 (3), 141147 (1980); 12 (4), 196200 (1980).Google Scholar
11Marshall, R. C., in Silicon Carbide–1973, edited by Marshall, R. C., Faust, J. W. Jr., and Ryan, C. E. (University of South Carolina Press, Columbia, SC, 1974).Google Scholar
12Matsunami, M., Nishino, S., and Tanaka, T., J. Cryst. Growth 45 (12), 138143 (1978).CrossRefGoogle Scholar
13Stinton, D. P., Caputo, A. J., and Lowden, R. A., Am. Ceram. Soc. Bull. 65 (2), 347350 (1986).Google Scholar
14Tsai, C. Y., Desu, S. B., and Chiu, C. C., J. Mater. Res. 9, 104 (1994).CrossRefGoogle Scholar
15Chiu, C. C., Desu, S. B., and Tsai, C. Y., J. Mater. Res. 8, 26172626 (1993).CrossRefGoogle Scholar
16Sheldon, B. W., in Solgasmix-PV for the PC, Oak Ridge National Laboratory, Oct. 1989.Google Scholar
17Eriksson, G., Acta Chem. Scand. 25 (7), 26512658 (1971).CrossRefGoogle Scholar
18White, W. B., Johnson, W. M., and Dantzig, G. B., J. Chem. Phys. 28 (5), 751755 (1958).CrossRefGoogle Scholar
19Besmann, T. M., Sheldon, B. W., Moss, T. S. III, and Raster, M. D., J. Am. Ceram. Soc. 75 (10), 28992903 (1992).CrossRefGoogle Scholar
20Besmann, T. M. and Johnson, M. L., in Proc. 3rd Int. Symp. on Ceramic Materials and Components for Engine, Las Vegas, NV, 443456 (1988).Google Scholar
21Burgess, J. N. and Lewis, T., Chem. and Industry 19, 76 (1974).Google Scholar
22JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Reference Data, 14 (1985).Google Scholar
23Chen, Z. J. and Desu, S. B., unpublished.Google Scholar
24Chiu, C. C. and Desu, S. B., J. Mater. Res. 8, 535544 (1993).CrossRefGoogle Scholar
25Chiu, C. C., Desu, S. B., Chen, G., Tsai, C. Y., and Reynolds, W. T. Jr., unpublished.Google Scholar
26Besmann, T. M., Sheldon, B. W., and Kaster, M. P., Surf, and Coating Technol. 43/44, 167175 (1990).CrossRefGoogle Scholar
27Schintlmeister, W., Wallgram, W., and Gigl, K., High Temp.–High Pressures 18, 211222 (1986).Google Scholar
28Kuo, D. H., Cheng, D. J., Shyy, W. J., and Hon, M. H., J. Electrochem. Soc. 137 (11), 36883692 (1990).CrossRefGoogle Scholar
29Motojima, S. and Hasegawa, M., J. Vac. Sci. Technol. A 8 (5), 37633768 (1990).CrossRefGoogle Scholar