Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T04:31:44.764Z Has data issue: false hasContentIssue false

Kinetics of the alignment and the formation of the Bi(2223) platelets in the powder-in-tube processed Bi(2223)/Ag composite tapes

Published online by Cambridge University Press:  31 January 2011

Li-jun Wu
Affiliation:
Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973
Y-L. Wang
Affiliation:
Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973
Weimin Bian
Affiliation:
Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973
Yimei Zhu
Affiliation:
Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973
T. R. Thurston
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973
R. L. Sabatini
Affiliation:
Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973
P. Haldar
Affiliation:
Intermagnetic General Corporation, Latham, New York 12110
M. Suenaga
Affiliation:
Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973
Get access

Abstract

The alignment and the formation of (Bi, Pb)2Sr2Ca2Cu3O10 inside an Ag sheath were investigated for tapes from four different precursor powders. Microstructural characterization along with in situ transmission x-ray diffraction experiments revealed that the kinetics depended strongly on the processing technique and the phase assemblage of the precursors. The alignment process was governed by the preferential grain growth of the Bi-cuprates along the a-b plane and the constraint applied by the sheath. The formation mechanism of (Bi, Pb)2Sr2Ca2Cu3O10 was either the intercalation or the nucleation and growth, depending on whether excessive liquid is adjacent to the platelets.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, articles in Proceedings of Applied Superconductivity Conference, Pittsburgh, PA (1996) to be published in IEEE Trans. Appl. Supercond. 7 (1997).Google Scholar
2.Morgan, P. E. D., Housley, R. M., Porter, J. R., and Ratto, J. J., Physica C 176, 279 (1991); P. E. D. Morgan, J. D. Piche, and R. M. Housley, Physica C 191, 179 (1992).CrossRefGoogle Scholar
3.Morgan, P. E. D., Doi, T., and Housley, R. M., Advances in Superconductivity, edited by Fujita, T. and Shioha, Y. (Springer-Verlag, Tokyo, 1994), Vol. VI, p. 327.Google Scholar
4.Luo, J. S., Merchant, N., Maroni, V. A., Fruen, D. M., Tani, B. S., Carter, W. L., and Riley, G. N. Jr, Appl. Supercond. 1, 101 (1993).CrossRefGoogle Scholar
5.Wang, M., Xiong, G., Tang, X., and Hong, Z., Physica C 210, 413 (1993).CrossRefGoogle Scholar
6.Hu, Q. Y., Li, H. K., and Dou, S. X., Physica C 250, 7 (1995).CrossRefGoogle Scholar
7.Grivel, J-C. and Flükiger, R., Supercond. Sci. Technol. 9, 555 (1996).CrossRefGoogle Scholar
8.Grivel, J-C. and Flükiger, R., J. Alloys Compounds (1997, in press).Google Scholar
9.Gao, X-H., Li, J., Jang, S-F., Gao, D., Zheng, G. D., and Gao, S., Physica C244, 321 (1995).CrossRefGoogle Scholar
10.Grasso, G., Perin, A., and Flükiger, R., Physica C250, 43 (1995).CrossRefGoogle Scholar
11.Grasso, G., Jeremie, A., and Flükiger, R., Supercond. Sci. Technol. 8, 827 (1995).CrossRefGoogle Scholar
12.Feng, Y., High, Y. E., Larbalestier, D. C., Sung, Y. S., and Hellstrom, E., Appl. Phys. Lett. 62, 1553 (1993).CrossRefGoogle Scholar
13.Luo, J. S., Merchant, N., Maroni, V. A., Riley, G. N. Jr, and Carter, W. L., Appl. Phys. Lett. 63, 690 (1993).CrossRefGoogle Scholar
14.Merchant, N., Luo, J. S., Maroni, V. A., Riley, G. N. Jr, and Carter, W. L., Appl. Phys. Lett. 65, 1039 (1994).CrossRefGoogle Scholar
15.Hulbert, S. F., J. Br. Ceram. Soc. 6, 11 (1969).Google Scholar
16.Bian, W-M., Zhu, Y., Wang, Y-L., and Suenaga, M., Physica C248, 119 (1995).CrossRefGoogle Scholar
17.Cai, Z-X., Zhu, Y., and Welch, D. O., Phys. Rev. 52, 13035 (1995).CrossRefGoogle Scholar
18.Wang, Y-L., Bian, W-M., Zhu, Y., Cai, Z-X., Welch, D. O., Sabatini, R. L., and Suenaga, M., Appl. Phys. Lett. 69, 580 (1996).CrossRefGoogle Scholar
19.Thurston, T. R., Wildgruber, U., Jisrawi, N., Haldar, P., Suenaga, M., and Wang, Y-L., J. Appl. Phys. 79, 3122 (1996).CrossRefGoogle Scholar
20.Thurston, T. R., Haldar, P., Wang, Y. L., Suenaga, M., Jisrawi, N. M., and Wildgruber, U., J. Mater. Res. 12, 891 (1997).CrossRefGoogle Scholar
21.Xu, M., Finnemore, D. K., Balachandran, U., and Haldar, P., Appl. Phys. Lett. 66, 3359 (1994).CrossRefGoogle Scholar
22.Xu, M., Finnemore, D. K., Balachandran, U., and Haldar, P., J. Appl. Phys. 78, 360 (1995).CrossRefGoogle Scholar
23.Drew, A. R., Cline, J. P., Vanderah, T. A., and Salazar, K., unpublished research.Google Scholar
24.Polonka, J., Xu, M., Li, Q., Goldman, A. I., and Finnemore, D. K., Appl. Phys. Lett. 59, 3640 (1991).CrossRefGoogle Scholar
25.McCallum, R. W., Dessis, K. W., Margulies, L., and Kramer, M. J., Processing and Properties of Long Lengths of Superconductors, Proc. of the 1993 Fall Meeting, Pittsburgh, PA, Oct. 17–21, 1993, edited by Balachandran, U., Collings, E., and , A. (The Minerals, Metals & Materials Society, Warrendale, PA).Google Scholar
26.Guo, Y. C., Liu, H. K., and Dou, S. X., J. Mater. Res. 8, 2187 (1993).CrossRefGoogle Scholar
27.Grivel, J-C. and Flükiger, R., Physica C229, 177 (1994).CrossRefGoogle Scholar
28.Sun, Y. S. and Hellstrom, E. E., Physica C255, 266 (1995).Google Scholar
29.Grivel, J-C., Jeremie, A., Hensel, B., and Flükiger, R., Supercond. Sci. Technol. 6, 725 (1993).CrossRefGoogle Scholar
30.Grivel, J-C. and Flükiger, R., Physica C235–240, 505 (1994); A. Jeremie, J-C. Grivel, and R. Flükiger, Physica C235–240, 943 (1994).CrossRefGoogle Scholar
31.Oh, S. S. and Osamura, K., Supercond. Sci. Technol. 4, 239 (1991).CrossRefGoogle Scholar
32.Grivel, J-C., Jeremie, A., Hensel, B., and Flükiger, R., Supercond. Mater., edited by Etourneu, J., Torrance, J. B., and , H., I. I. I. T. International (1993), p. 59.Google Scholar
33.Majewski, P., Kaesche, S., Su, H-L., and Aldinger, F., Physica C221, 295 (1994).CrossRefGoogle Scholar
34.Zhang, W., Hellstrom, E. E., and Polak, M., Supercond. Sci. Technol. 9, 1 (1996).Google Scholar
35.Luo, J. S., Dorris, S. E., Fischer, A. K., LeBoy, J. S., Maroni, V. A., Feng, Y., and Larbalestier, D. C., Supercond. Sci. Technol. 9, 412 (1996).CrossRefGoogle Scholar
36.Wang, Y-L., Bien, W., Zhu, Y., Fukomoto, Y., Wiesmann, H. J., and Suenaga, M., J. Electron. Mater. 24, 1817 (1995).CrossRefGoogle Scholar
37. The heat treatment schedule for tape C was what is stated in Sec. II. However, tape B was ramped to 770 °C within 2 h and then ramped to 840 °C at 10 °C/h. Thus, unfortunately, the heat-treatment schedules for these tapes were not the same. However, the differences in the general characteristics of the alignment and the Bi(2223) growth between these tapes were intrinsic; i.e., all of the tapes with the spray pyrolysis completed alignment before the formation of Bi(2223) initiated under various temperature ramp schedules while the alignment for tapes C and D completed with the growth of Bi(2223).Google Scholar
38.Duo, S. X., Liu, H. K., Zhang, Y. L., and Bian, W. M., Supercond. Sci. Technol. 4, 203 (1991).Google Scholar
39.Hwang, N. M., Roth, R. S., and Rawn, C. J., J. Am. Ceram. Soc. 73, 2531 (1990); R. S. Roth, C. J. Rawn, J. J. Ritter, and B. P. Burton, J. Am. Ceram. Soc. 72, 1545 (1989).CrossRefGoogle Scholar
40.Strobel, P., Toledano, J. C., Morin, D., Schneck, J., Vacquier, G., Monnerieau, O., Primot, J., and Fournier, T., Physica C201, 27 (1992).CrossRefGoogle Scholar
41.Luo, J. S., Merchant, N., Haash, M., and Rupich, M., High Temperature Superconductors: Synthesis, Processing, and Large-Scale Applications, Proc. of the 1996 Symposium, Anaheim, CA, edited by Balachandran, U., McGinn, P. J., and Abell, J. S. (The Minerals, Metals & Materials Society, Warrendale, PA, 1997), p. 33.Google Scholar
42.Luo, J. S., Merchant, N., Escorcia-Aparicio, E. J., Maroni, V. A., and Tani, B. S., J. Mater. Res. 9, 3059 (1994).CrossRefGoogle Scholar
43.Selvamanickam, V., Martin, P. M., and Kroeger, D. M., unpublished research.Google Scholar
44.Manaila, T., Malis, O., Manicu, M., and Devernyi, A., Phys. Status Solidi A: 147, 31 (1995); O. Malis, M. Manicu, R. Manaila, and A. Devernyi, Phys. Status Solidi A: 147, 325 (1995).CrossRefGoogle Scholar
45.Tarascon, J. M., McKinnon, W. R., Barboux, P., Hwang, D. M., Bagley, B. G., Greene, L. H., Hull, G. W., LePage, Y., Stoffel, N., and Giroud, M., Phys. Rev. B 38, 8885 (1988).CrossRefGoogle Scholar
46.Kramer, M. J., McCallum, R. W., Margulies, L., Arrasmith, S. R., and Holesinger, T. G., J. Electron. Mater. 22, 1269 (1993).CrossRefGoogle Scholar
47.Osamura, K., Katsumata, Y., Nonaka, S., and Okuda, H., Adv. in Supercond. VIII (1997), to be published.Google Scholar