Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T13:21:18.615Z Has data issue: false hasContentIssue false

Kinetic analysis of solid-state processes

Published online by Cambridge University Press:  31 January 2011

Jiří Málek*
Affiliation:
Joint Laboratory of Solid State Chemistry, Academy of Sciences of the Czech Republic and University of Pardubice, 532 10 Pardubice, Czech Republic
Takefumi Mitsuhashi
Affiliation:
National Institute for Research in Inorganic Materials, Science and Technology Agency of Japan, Namiki 1–1, Tsukuba, Ibaraki 305, Japan
José Manuel Criado
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Universidad de Sevilla-C.S.I.C., c/ Ame’rico Vespucio s/n, 41092 Sevilla, Spain
*
a)Address all correspondence to this author. e-mial: jiri.malek@upce.cz
Get access

Abstract

A simple method for kinetic analysis of solid-state processes has been developed. A criteria capable of classifying different processes is explored here with a view toward visualizing the complexity of solid-state kinetics. They provide a useful tool for the determination of the most suitable kinetic model. The method has been applied to the analysis of crystallization processes in amorphous ZrO2 and RuO2. It is found that the crystallization kinetics of as-prepared sample exhibits a complex behavior under nonisothermal conditions. This is probably due to an overlapping of the nucleation- and crystal-growth processes at the beginning of crystallization. As a consequence, the Johnson–Mehl–Avrami nucleation-growth model cannot be applied. A two-parameter autocatalytic model provides a good description of the crystallization process under isothermal and nonisothermal conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cahn, J.W., Acta Metall. 4, 449 (1956).CrossRefGoogle Scholar
2.Jackson, K.A., Uhlmann, D.R., and Hunt, J.D., J. Cryst. Growth 1, 1 (1967).CrossRefGoogle Scholar
3.Gunton, J.D., Droz, M., Introduction to the Theory of Metastable and Unstable States (Springer-Verlag, Berlin, 1983).CrossRefGoogle Scholar
4.Sekimoto, K., Physica 135A, 328 (1986).CrossRefGoogle Scholar
5.Coffey, K.R., Clevenger, L.A., Barmak, K., Rudman, A.A., and Thompson, C.V., Appl. Phys. Lett. 55, 852 (1989).CrossRefGoogle Scholar
6.Šesták, J., Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis (Elsevier, Amsterdam, 1984).Google Scholar
7.Brown, M.E., Dollimore, D., and Galwey, A.K., Comprehensive Chemical Kinetics (Elsevier, Amsterdam, 1980), Vol. 22.Google Scholar
8.Šesták, J., J. Therm. Anal. 16, 503 (1979).Google Scholar
9.Brown, M.E., J. Therm. Anal. 49, 17 (1997).CrossRefGoogle Scholar
10.Maciejewski, M., J. Therm. Anal. 38, 51 (1992).CrossRefGoogle Scholar
11.Šesták, J., J. Therm. Anal. 36, 1997 (1990).Google Scholar
12.Schöllhorn, R., Angew. Chem. Int. Ed. Engl. 35, 2338 (1996).CrossRefGoogle Scholar
13.Holt, J.B., Cutler, J.B., and Wadsworth, M.E., J. Am. Ceram. Soc. 45, 133 (1962).CrossRefGoogle Scholar
14.Jander, W., Z. Anorg. Allg. Chem. 163, 1 (1927).CrossRefGoogle Scholar
15.Ginstling, A.M. and Broushtein, B.I., Zh. Prikl. Khim. 23, 1327 (1950).Google Scholar
16.Young, D.A., Decomposition of Solids (Pergamon Press, Oxford, 1966).Google Scholar
17.Johnson, W.A. and Mehl, R.F., Trans. Am. Inst. Miner. Eng. 135, 419 (1939).Google Scholar
18.Avrami, M., J. Phys. Chem. 8, 212 (1940).CrossRefGoogle Scholar
19.Kolmogorov, A.N., Izvestia Akad. Nauk USSR, Ser Math. 1, 355 (1937).Google Scholar
20.Erofeev, B.V., Dokl. Acad. Sci. USSR 52, 511 (1946).Google Scholar
21.Christian, J.W., The Theory of Transformations in Metals and Alloys, 2nd ed., (Pergamon Press, New York, 1975), p. 525.Google Scholar
22.Prout, E.G. and Tompkins, F.C., Trans. Faraday. Soc. 40, 488 (1944).CrossRefGoogle Scholar
23.Brown, M.E., Thermochim. Acta 300, 93 (1977).CrossRefGoogle Scholar
24.Ng, W.L., Aust. J. Chem. 28, 1169 (1975).CrossRefGoogle Scholar
25.Šesták, J. and Berggren, G., Thermochim. Acta 3, 1 (1971).CrossRefGoogle Scholar
26.Serra, R., Sempere, J., and Nomen, R., Thermochim. Acta 316, 37 (1998).CrossRefGoogle Scholar
27.Serra, R., Sempere, J., and Nomen, R., J. Therm. Anal. 52, 933 (1998).CrossRefGoogle Scholar
28.Friedman, H.L., J. Polym. Sci. C 6, 183 (1964).CrossRefGoogle Scholar
29.Vyazovkin, S. and Sbirrazzuoli, N., Macromolecules 29, 1867 (1996).CrossRefGoogle Scholar
30.Vyazovkin, S. and Wight, C.A., J. Phys. Chem. A 101, 5653 (1997).CrossRefGoogle Scholar
31.Vyazovkin, S. and Wight, C.A., J. Phys. Chem. A 101, 8279 (1997).CrossRefGoogle Scholar
32.Ozawa, T., Bull. Chem. Soc. Jpn. 57, 639 (1984).CrossRefGoogle Scholar
33.Ozawa, T., Thermochim. Acta 100, 109 (1986).CrossRefGoogle Scholar
34.Málek, J., Thermochim. Acta 355, 239 (2000).CrossRefGoogle Scholar
35.Koga, N. and Šesták, J., J. Am. Ceram. Soc. 83, 1753 (2000).CrossRefGoogle Scholar
36.Málek, J., Thermochim. Acta 267, 61 (1995).CrossRefGoogle Scholar
37.Málek, J., Thermochim. Acta 200, 257 (1992).CrossRefGoogle Scholar
38.Criado, J.M., Thermochim. Acta 24, 186 (1978).CrossRefGoogle Scholar
39.Šesták, J., Málek, J., Solid State Ionics 63–65, 254 (1993).Google Scholar
40.Koga, N., Málek, J., Šesták, J., and Tanaka, H., Netsu Sokutei 20, 210 (1993).Google Scholar
41.Málek, J., Sci. Papers Univ. Pardubice, Series A 2, 177 (1996).Google Scholar
42.Hatakeyama, T. and Lin, Zhenhai, Handbook of Thermal Analysis (John Wiley & Sons, Chichester, 1998).Google Scholar
43.Málek, J. and Klikorka, J., J. Therm. Anal. 32, 1883 (1987).CrossRefGoogle Scholar
44.Málek, J., Tichý, L., and Klikorka, J., J. Therm. Anal. 33, 667 (1988).CrossRefGoogle Scholar
45.Málek, J., Thermochim. Acta 129, 293 (1988).CrossRefGoogle Scholar
46.Málek, J., J. Non-Crystalline Solids 107, 323 (1989).CrossRefGoogle Scholar
47.Málek, J. and Smrčka, V., Thermochim. Acta 186, 153 (1991).CrossRefGoogle Scholar
48.Málek, J. and Smrčka, V., Trends in Non-Crystalline Solids (World Scientific Publishing Co., Singapore, 1992) p. 189.Google Scholar
49.Málek, J. and Tichý, L., Trends in Non-Crystalline Solids (World Scientific Publishing Co., Singapore, 1992), p. 192.Google Scholar
50.Málek, J., J. Therm. Anal. 40, 159 (1993).CrossRefGoogle Scholar
51.Černošková, E., Ivanova, Z.G., and Pamukhieva, V., Thermochim. Acta 316, 97 (1998).CrossRefGoogle Scholar
52.Málek, J., Messaddeq, Y., Inoue, S., and Mitsuhashi, T., J. Mater. Sci. 30, 3082 (1995).CrossRefGoogle Scholar
53.Mošner, P., Prokůpkova, P., and Koudelka, L., J. Therm. Anal. 54, 937 (1998).CrossRefGoogle Scholar
54.Mošner, P. and Koudelka, L., Sci. Papers Univ. Pardubice, Series A 4, 75 (1998).Google Scholar
55.Málek, J., Matsuda, S., Watanabe, A., Ikegami, T., and Mitsuhashi, T., Thermochim. Acta 267, 181 (1995).CrossRefGoogle Scholar
56.Málek, J., Watanabe, A., and Mitsuhashi, T., Thermochim. Acta 282–283, 131 (1996).CrossRefGoogle Scholar
57.Málek, J., Mitsuhashi, T., Ramírez-Castellanos, J., and Matsui, Y., J. Mater. Res. 14, 1834 (1999).CrossRefGoogle Scholar
58.Málek, J., Watanabe, A., and Mitsuhashi, T., J. Therm. Anal. Cal. 60, 699 (2000).CrossRefGoogle Scholar
59.Calventus, Y., Colomer, P., Málek, J., Montserrat, S., López-Carrasquero, F., Martínez de Ilarduya, A., and Muňoz-Guerra, S., Polymer 40, 801 (1999).CrossRefGoogle Scholar
60.Baitalow, F., Schmidt, H.G., and Wolf, G., Thermochim. Acta 337, 111 (1999).CrossRefGoogle Scholar
61.Montserrat, S. and Málek, J., Thermochim. Acta 228, 47 (1993).CrossRefGoogle Scholar
62.Montserrat, S., Flaqué, C., Calafell, M., Andreu, G., and Málek, J., Thermochim. Acta 269–270, 213 (1995).CrossRefGoogle Scholar
63.Montserrat, S., Flaqué, C., Pagés, P., and Málek, J., J. Appl. Polym. Sci. 56, 1413 (1995).CrossRefGoogle Scholar
64.Montserrat, S., Andreu, G., Cortés, P., Calventus, Y., Colomer, P., Hutchinson, J.M., and Málek, J., J. Appl. Polym. Sci. 61, 1663 (1996).3.0.CO;2-E>CrossRefGoogle Scholar
65.Montserrat, S., Málek, J., and Colomer, P., Thermochim. Acta 313, 83 (1998).CrossRefGoogle Scholar
66.Montserrat, S., Málek, J., and Colomer, P., Thermochim. Acta 336, 65 (1999).CrossRefGoogle Scholar
67.Koga, N., Thermochim. Acta 258, 145 (1995).CrossRefGoogle Scholar
68.Koga, N., Criado, J.M., and Tanaka, H., Thermochim. Acta 340–341, 387 (1999).CrossRefGoogle Scholar
69.Lu, Z., Yang, L., and Sun, J., J. Therm. Anal. 44, 1391 (1995).CrossRefGoogle Scholar
70.Sun, J., Lu, Z., Li, Y., and Dai, J., J. Therm. Anal. Cal. 58, 383 (1999).CrossRefGoogle Scholar
71.Beneš, L., Černošková, E., Málek, J., Melánová, K., Patrono, P., and Zima, V., J. Incl. Phenom. Macro. Chem. 36, 163 (2000).CrossRefGoogle Scholar
72.Gorbatchev, V.M., J. Therm. Anal. 27, 151 (1983).CrossRefGoogle Scholar
73.Málek, J., Thermochim. Acta 138, 337 (1989).CrossRefGoogle Scholar
74.Freeman, E.S. and Carroll, B., J. Phys. Chem. 62, 394 (1958).CrossRefGoogle Scholar
75.Málek, J. and Criado, J.M., Thermochim. Acta 236, 187 (1994).CrossRefGoogle Scholar
76.Šatava, V., Thermochim. Acta 2, 423 (1971).CrossRefGoogle Scholar
77.Augis, J.A. and Bennett, J.E., J. Therm. Anal. 13, 283 (1978).CrossRefGoogle Scholar
78.Málek, J., Criado, J.M., Gotor, F.J., and Šesták, J., Thermochim. Acta 322, 77 (1988).CrossRefGoogle Scholar
79.Henderson, D.W., J. Therm. Anal. 15, 325 (1979).CrossRefGoogle Scholar
80.Henderson, D.W., J. Non-Cryst. Solids 30, 301 (1979).CrossRefGoogle Scholar
81.Málek, J., J. Therm. Anal. Cal. 56, 763 (1999).CrossRefGoogle Scholar
82.Málek, J., Criado, J.M., Šesták, J., and Militký, J., Thermochim. Acta 153, 429 (1989).CrossRefGoogle Scholar