Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T23:55:18.678Z Has data issue: false hasContentIssue false

Joining of silicon nitride ceramics for high-temperature applications

Published online by Cambridge University Press:  31 January 2011

Rong-Jun Xie
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1-1, Ibaraki 305-0044, Japan
Mamoru Mitomo
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1-1, Ibaraki 305-0044, Japan
Li-Ping Huang
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
Xi-Ren Fu
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
Get access

Extract

A refractory silicon nitride joint, which contains β–Si3N4 grains and grain boundary amorphous phase in the joined layer, was developed with the aid of a ceramic adhesive based on the system Si3N4–Y2O3–SiO2–Al2O3. The similarity in chemistry and microstructure between the parent ceramic and the joint zone indicates that the joining mechanism is the same as that involved in the sintering of Si3N4. The resultant joint exhibits a high bond strength of 550 MPa at 25 °C and retains a strength of 332 MPa at 1000 °C. Post-joining hot-isostatic pressing was applied to strengthen the joint, resulting in increased strengths of 668 MPa at room temperature and 464 MPa at 1000 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Santella, M.L., Am. Ceram. Soc. Bull. 71, 947 (1992).Google Scholar
2.Schwartz, M.M., in Ceramic Joining, edited by Schwartz, M.M. (ASM International, Material Park, OH, 1990), p. 1.Google Scholar
3.Loehman, R.E., Tomsia, A.P., Pask, J.A., and Johnson, S.M., J. Am. Ceram. Soc. 73, 522 (1990).CrossRefGoogle Scholar
4.Peteves, S.D. and Nicholas, M.G., J. Am. Ceram. Soc. 79, 1553 (1996).CrossRefGoogle Scholar
5.Patten, D.O., Torti, M.L., and Charreyron, P., Ceram. Eng. Sci. Proc. 10, 1866 (1989).CrossRefGoogle Scholar
6.Peteves, S.D. and Suganuma, K., Ceram. Trans. 35, 229 (1993).Google Scholar
7.Suganuma, K., in Ceramics and Glasses, Engineered Materials Handbook Vol. 4 (ASM International, Material Park, OH, 1991), p. 523.Google Scholar
8.Iino, Y., J. Mater. Sci. Lett. 10, 104 (1990).CrossRefGoogle Scholar
9.Dalgleish, B.J., Tomsia, A.P., Nakashima, K., Locatelli, M.R., and Glaeser, A.M., Scripta Metall. Mater. 31, 1043 (1994).CrossRefGoogle Scholar
10.Ceccone, G., Nicholas, M.G., Peteves, S.D., Dalgleish, B.J., Tomsia, A.P., and Glaeser, A.M., Acta Mater. 44, 657 (1996).CrossRefGoogle Scholar
11.Peteves, S.D., Ceram. Int. 22, 527 (1996).CrossRefGoogle Scholar
12.Becher, P.F. and Halen, S.A., Am. Ceram. Soc. Bull. 58, 582 (1979).Google Scholar
13.Johnson, S.M. and Rowcliffe, D.J., J. Am. Ceram. Soc. 68, 468 (1985).CrossRefGoogle Scholar
14.Mecartney, M.L., Sinclair, R., and Loehman, R.E., J. Am. Ceram. Soc. 68, 472 (1985).CrossRefGoogle Scholar
15.Kang, S., Dunn, E.M., Selverian, J.H., and Kim, H.J., Am. Ceram. Soc. Bull. 68, 1608 (1989).Google Scholar
16.Tillmann, W., Lugscheider, E., and Sehlimbach, K., Weld. J. 76, 300s (1997).Google Scholar
17.Walls, P.A. and Ueki, M., J. Am. Ceram. Soc. 78, 999 (1995).CrossRefGoogle Scholar
18.Walls, P.A. and Ueki, M., J. Am. Ceram. Soc. 75, 2491 (1992).CrossRefGoogle Scholar
19.Xie, R.J., Huang, L.P., and Fu, X.R., J. Mater. Sci. Lett. 17, 761 (1998).CrossRefGoogle Scholar
20.Xie, R.J., Huang, L.P., Fu, X.R., and Chen, Y., J. Eur. Ceram. Soc. 18, 901 (1998).CrossRefGoogle Scholar
21.Xie, R.J., Huang, L.P., Chen, Y., and Fu, X.R., J. Mater. Sci. 34, 1783 (1999).CrossRefGoogle Scholar
22.Lawn, B.R., Evans, A.G., and Marshall, D.B., J. Am. Ceram. Soc. 63, 574 (1980).CrossRefGoogle Scholar
23.Baik, S. and Raj, R., J. Am. Ceram. Soc. 70, c105 (1987).Google Scholar
24.Coon, D.N., Tallman, R.L., and Neilson, R.M., Adv. Ceram. Mater. 3, 154 (1988).CrossRefGoogle Scholar
25.Choi, S.R., Tikare, V., and Pawlik, R., Ceram. Eng. Sci. Proc. 12, 2190 (1991).CrossRefGoogle Scholar
26.Loehman, R.E., Key Eng. Mater. 161–163, 657 (1999).Google Scholar
27.Tamari, N. and Yagi, T., J. Ceram. Soc. Jpn. 93, 999 (1985).Google Scholar
28.Kosakai, M. and Haibara, Y., in Advanced Materials '93 I/A: Ceramics, Powders, Corrosion and Advanced Processing, edited by Mizutani, N., Kijima, K., and Mitomo, M. (Trans. Mater. Res. Soc. Jpn. 14A, Elsevier Science, 1994), p. 589.CrossRefGoogle Scholar
29.Weldon, L.M., Hampshire, S., and Pomeroy, M.J., J. Eur. Ceram. Soc. 17, 1941 (1997).CrossRefGoogle Scholar
30.Glass, S.J., Mahoney, F.M., Quillan, B., Pollinger, J.P., and Loehman, R.E., Acta Mater. 46, 2393 (1998).CrossRefGoogle Scholar
31.Brittain, R.D., Johnson, S.M., Lamoreaux, R.H., and Rowcliffe, D.J., J. Am. Ceram. Soc. 67, 522 (1984).CrossRefGoogle Scholar
32.Loehman, R.E., J. Non-Cryst. Solids 42, 433 (1980).CrossRefGoogle Scholar
33.Gopal, M., De Jonghe, L.C., and Thomas, G., Scripta Mater. 36, 455 (1997).CrossRefGoogle Scholar
34.Johnson, S., Blum, Y., McDermott, G., and Gusman, M., Scripta Metall. Mater. 31, 1025 (1994).CrossRefGoogle Scholar
35.O'Brien, M.H. and Coon, D.N., J. Am. Ceram. Soc. 74, 103 (1991).CrossRefGoogle Scholar
36.Iturriza, I., Castro, F., and Fuentes, M., J. Mater. Sci. 24, 2047 (1989).CrossRefGoogle Scholar
37.Xie, R.J., Doctorate Thesis, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China (1998).Google Scholar