Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T02:40:33.159Z Has data issue: false hasContentIssue false

Ion-beam mixing in energetic collision cascades: Thermal-spike model and experiments

Published online by Cambridge University Press:  26 July 2012

Byungwoo Park
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Hyukjae Lee
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
Get access

Extract

A phenomenological model of ion-beam mixing during energetic collision cascades is developed, based on the concept of a thermal spike, to correctly predict that the mixing rate Dt depends linearly on nuclear stopping power (instead of a power-law dependence), and is correlated with a heat of mixing (analogous to Darken's relation). Previous ion-beam mixing experiments from 25 different metallic bilayers agree well with the model's predictions: mixing rates (Dt)/(ion-dose) ∼ 1 nm4, and an activation enthalpy of approximately 1 eV for atomic diffusion in liquid-like cascades.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brinkman, J. A., J. Appl. Phys. 25, 961 (1954).CrossRefGoogle Scholar
2.Seitz, F. and Koehler, J. S., Solid State Phys. 2, 305 (1956).Google Scholar
3.Sigmund, P., Appl. Phys. Lett. 25, 169 (1974).CrossRefGoogle Scholar
4.Vineyard, G. H., Radiat. Eff. 29, 245 (1976).CrossRefGoogle Scholar
5.Thompson, D.A., Radiat. Eff. 56, 105 (1981).CrossRefGoogle Scholar
6.Davies, J. A., in Surface Modification and Alloying by Laser, Ion and Electron Beams, edited by Poate, J.M., Foti, G., and Jacobson, D.C. (Plenum, New York, 1983), Chap. 7, p. 189;CrossRefGoogle Scholar
Mayer, J. W. and Lau, S. S., in Surface Modification and Alloying by Laser, Ion and Electron Beams, edited by Poate, J.M., Foti, G., and Jacobson, D.C. (Plenum, New York, 1983), p. 241.Google Scholar
7.Johnson, W.L., Cheng, Y. T., Van Rossum, M., and Nicolet, M-A., Nucl. Instrum. Methods B 7/8, 657 (1985).CrossRefGoogle Scholar
8.de la Rubia, T. Diaz, Averback, R. S., Benedek, R., and King, W.E., Phys. Rev. Lett. 59, 1930 (1987).CrossRefGoogle Scholar
9.Børgesen, P., Lilienfeld, D. A., Johnson, H. H., Alford, T. L., and Wistrom, R.E., J. Appl. Phys. 68, 1364 (1990).Google Scholar
10.Lieb, K.P., Bolse, W., and Uhrmacher, M., Nucl. Instrum. Methods B 89, 277 (1994).Google Scholar
11.Miotello, A. and Kelly, R., Surf. Sci. 314, 275 (1994).Google Scholar
12.Workman, T.W., Cheng, Y. T., Johnson, W. L., and Nicolet, M-A., Appl. Phys. Lett. 50, 1485 (1987).CrossRefGoogle Scholar
13.Cheng, Y.T., Workman, T.W., Nicolet, M-A., and Johnson, W.L., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O. and Picraux, S. T. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 419.Google Scholar
14.Van Rossum, M., Cheng, Y.T., Nicolet, M-A., and Johnson, W. L., Appl. Phys. Lett. 46, 610 (1985).CrossRefGoogle Scholar
15.Børgesen, P., Lilienfeld, D. A., and Msaad, H., Nucl. Instrum. Methods B 59/60, 563 (1991).CrossRefGoogle Scholar
16.Børgesen, P., Lilienfeld, D.A., and Johnson, H.H., Appl. Phys. Lett. 57, 1407 (1990).CrossRefGoogle Scholar
17.Averback, R. S., de la Rubia, T. Diaz, and Benedek, R., Nucl. Instrum. Methods B 33, 693 (1988).CrossRefGoogle Scholar
18.Hsieh, H., de la Rubia, T. Diaz, Averback, R. S., and Benedek, R., Phys. Rev. B 40, 9986 (1989).CrossRefGoogle Scholar
19.Touloukian, Y. S., Thermophysical Properties of High Temperature Solid Materials (Macmillan, New York, 1967).Google Scholar
20.Park, B., J. Appl. Phys. 82, 4219 (1997).CrossRefGoogle Scholar
21.Haasen, P., Physical Metallurgy (Cambridge University, Cambridge, 1986).Google Scholar
22.Ludwig, K. F. Jr., and Park, B., Phys. Rev. Lett. 68, 1438 (1992).CrossRefGoogle Scholar
23. Experimental mixing data of Au/Ag bilayer showing a remarked deviation from Fig. 1 are not shown. The big discrepancy is explained in terms of interfacial nonuniformity, by Børgesen, P., Lilienfeld, D. A., and Johnson, H. H., Appl. Phys. Lett. 55, 2497 (1989).Google Scholar
24.Shewmon, P.G., Diffusion in Solids (McGraw-Hill Book, New York, 1963).Google Scholar
25.Christian, J. W., The Theory of Transformations in Metals and Alloys (Pergamon Press, Oxford, 1981).Google Scholar
26. Heat of mixing for A 50B 50. Miedema, A. R., Philips Tech. Rev. 36, 217 (1976).Google Scholar
27. Cohesive energy for A 50B 50, obtained from the average of the corresponding cohesive energies of pure solids A and B, plus ΔH mix. Kittel, C., Introduction to Solid State Physics (John Wiley & Sons, Inc., New York, 1986).Google Scholar
28. Nuclear stopping power at the interface of A on B. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar