Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T02:56:30.169Z Has data issue: false hasContentIssue false

Ion-beam irradiation of Gd2Sn2O7 and Gd2Hf2O7 pyrochlore: Bond-type effect

Published online by Cambridge University Press:  03 March 2011

Jie Lian
Affiliation:
Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104
Rodney C. Ewing*
Affiliation:
Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104
L.M. Wang
Affiliation:
Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104
K.B. Helean
Affiliation:
Department of Chemical Engineering and Materials Science, The University of California, Davis, California 95616
*
a) Address all correspondence to this author. e-mail: rodewing@umich.edu
Get access

Abstract

Ceramics with III-IV pyrochlore compositions, A3+2B4+2O7 (A = Y and rare earth elements; B = Ti, Zr, Sn, or Hf), show a wide range of responses to ion-beam irradiation. To evaluate the role of the B-site cations on the radiation stability ofthe pyrochlore structure-type, Gd2Sn2O7 and Gd2Hf2O7 have been irradiated by1 MeV Kr+. The results are discussed in terms of the ionic size and type ofbonding of Sn4+ and Hf4+ and compared to previous results for titanate andzirconate pyrochlores. Gd2Sn2O7 is sensitive to ion beam–induced amorphizationwith a critical amorphization dose of approximately 3.4 displacements per atom(dpa) (2.62 × 1015 ions/cm2) at room temperature and a critical amorphization temperature of approximately 350 K. Gd2Hf2O7 does not become amorphous at adose of approximately 4.54 displacement per [lattice] atom (3.13 × 1015 ions/cm2) at room temperature, but instead is transformed to a disordered fluorite structure upon ion-beam irradiation. Although the radius ratio of the A- to B-site cations provides a general indication of the type of radiation response of different pyrochlore compositions, the results for Gd2Sn2O7 emphasize the importance of bond type, particularly the covalency of the 〈Sn–O〉 bond in determining the radiation response.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Subramanian, A., Aravamudan, G. and Rao, G.V.S., Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
2Chakoumakos, B.C., J. Solid State Chem. 53, 120 (1984).CrossRefGoogle Scholar
3Moon, P.K. and Tuller, H.L., Solid State Ionics 28, 470 (1988).Google Scholar
4Tuller, H.L., Solid State Ionics 52, 135 (1992).Google Scholar
5Cann, D.P., Randall, C.A. and Shrout, T.R., Solid State Commun. 7, 529 (1996).CrossRefGoogle Scholar
6Goodenough, J.B. and Castellano, R.N., J. Solid State Chem. 44, 108 (1982).Google Scholar
7Wu, J., Wei, X.Z., Padture, N.P., Klemens, P.G., Gell, M., Garcia, E., Miranzo, P. and Osendi, M.I., J. Am. Ceram. Soc. 85, 3031 (2002).Google Scholar
8Weber, W.J., Ewing, R.C., Catlow, C.R.A., de Rubia, T.D. la, Hobbs, L.W., Kinoshita, C., Matzke, H., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R. and Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).Google Scholar
9Ewing, R.C., Weber, W.J., Clinard, F.W. Jr., Prog. Nucl. Energy 29, 63 (1995).CrossRefGoogle Scholar
10Sickafus, K.E., Minervini, L., Grimes, R.W., Valdez, J.A., Ishimaru, M., Li, F., McClellan, K.J. and Hartmann, T., Science 289, 748 (2000).CrossRefGoogle Scholar
11Ringwood, A.E., Kesson, S.E., Ware, N.G., Hibberson, W. and Major, A., Nature 278, 219 (1979).CrossRefGoogle Scholar
12Weber, W.J. and Ewing, R.C., Science 289, 2051 (2000).CrossRefGoogle Scholar
13Ewing, R.C., Weber, W.J., and Lian, J.: J. Appl. Phys. (in press).Google Scholar
14Wang, S.X., Wang, L.M., Ewing, R.C., Was, G.S. and Lumpkin, G.R., Nucl. Instrum. Methods Phys. Res. B 148, 704 (1999).CrossRefGoogle Scholar
15Wang, S.X., Wang, L.M., Ewing, R.C. and Kutty, K.V.G., Nucl. Instrum. Methods Phys. Res. B 169, 135 (2000).CrossRefGoogle Scholar
16Wang, S.X., Begg, B.D., Wang, L.M., Ewing, R.C., Weber, W.J. and Kutty, K.V.G., J. Mater. Res. 14, 4470 (1999).Google Scholar
17Begg, B.D., Hess, N.J., McCready, D.E., Thevuthasan, S. and Weber, W.J., J. Nucl. Mater . 289, 188 (2001).CrossRefGoogle Scholar
18Lian, J., Zu, X.T., Kutty, K.V.G., Chen, J., Wang, L.M. and Ewing, R.C., Phys. Rev. B 66, 054108 (2002).CrossRefGoogle Scholar
19Sickafus, K.E., Valdez, J.A., Williams, J.R., Grimes, R.W. and Hawkins, H.T., Nucl. Instrum. Methods Phys. Res. B 191, 549 (2002).CrossRefGoogle Scholar
20Lian, J., Wang, L., Chen, J., Sun, K., Ewing, R.C., Farmer, J.M. and Boatner, L.A., Acta Materialia 51, 1493 (2003).CrossRefGoogle Scholar
21Lian, J., Wang, L.M., Wang, S.X., Chen, J., Boatner, L.A. and Ewing, R.C., Phys. Rev. Lett . 87, 145901 (2001).CrossRefGoogle Scholar
22Shannon, R.D., Acta Crystallogr ., 32, 751 (1976).CrossRefGoogle Scholar
23Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985)Google Scholar
24Chartier, A., Meis, C., Crocombette, J-P., Corrales, L.R. and Weber, W.J., Phys. Rev. B 67, 174102 (2003).CrossRefGoogle Scholar
25Smith, K.L., Collela, M., Cooper, R. and Vance, E.R., J. Nucl. Mater. 321, 19 (2003).CrossRefGoogle Scholar
26Weber, W.J., Nucl. Instrum. Methods Phys. Res. B 166, 98 (2000).CrossRefGoogle Scholar
27Wang, S.X., Wang, L.M. and Ewing, R.C., Phys. Rev. B 63, 024105 (2001).CrossRefGoogle Scholar
28Bevan, D.J.M. and Summervile, E. in Handbook on the Physics and Chemistry of Rare Earths, edited by Gschneidner, K.A. Jr., and Eyring, L. (North-Holland, Amsterdam, 1979), p. 401Google Scholar
29Wuensch, B.J. and Eberman, K.W., JOM 52, 19 (2000).Google Scholar
30Lian, J., Chen, J., Wang, L.M., Ewing, R.C., Farmer, J.M., Boatner, L.A. and Helean, K.B., Phys. Rev. B 68, 134107 (2003).CrossRefGoogle Scholar
31Lian, J, Wang, L.M., Haire, R.G., Helean, K.B., and Ewing, R.C.: Nucl. Instrum. Methods Phys. Res. B (in press).Google Scholar
32Kennedy, B.J., Hunter, B.A. and Howard, C.J., J. Solid State Chem. 130, 58 (1997).Google Scholar
33Panero, W.R., Stixrude, L.P. and Ewing, R.C., Phys. Rev. B (unpublished)Google Scholar
34Naguib, H.M. and Kelly, R., Radiat. Eff. 25, 1 (1975).CrossRefGoogle Scholar
35Eby, R.K., Ewing, R.C. and Birtcher, R.C., J. Mater. Res. 7, 3080 (1992).Google Scholar
36Wang, S.X., Wang, L.M., Ewing, R.C. and Doremus, R.H., J. Non-Cryst. Solids 238, 214 (1998).Google Scholar