Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T21:40:11.778Z Has data issue: false hasContentIssue false

Interface microstructure between Fe-42Ni alloy and pure Sn

Published online by Cambridge University Press:  31 January 2011

Chi-Won Hwang*
Affiliation:
Nano Science and Technology Center, ISIR, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
K. Suganuma
Affiliation:
Nano Science and Technology Center, ISIR, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
Jung-Goo Lee
Affiliation:
UHVEM, Osaka University, Mihogaoka 7-1, Ibaraki, Osaka 567-0047, Japan
H. Mori
Affiliation:
UHVEM, Osaka University, Mihogaoka 7-1, Ibaraki, Osaka 567-0047, Japan
*
a)Address all correspondence to this author. e-mail: hwang12@sanken.osaka-u.ac.jp
Get access

Abstract

The interfacial reaction and microstructure of Sn with an Fe-42Ni substrate soldered at 250 °C were studied primarily using transmission electron microscopy. Apparent double reaction layers formed between Fe-42Ni and Sn of the same phase of FeSn2 containing Ni from 2 to 6 at.% as a substitution impurity for Fe. The first layer, which faced an Fe-42Ni substrate, was thin and grew with a flat interface. The second layer, which adhered to Sn solder, showed needle/square pillar-shaped small crystalline structures. Between these two layers, voids were frequently observed. The morphological difference between these two layers and voids could be attributed to the slow-fast diffusion mechanism during soldering. The fast diffusion occurring along the surfaces or the grain boundary of FeSn2 in the second layer led to the growth of FeSn2 products into Sn melt. Simultaneously, the slow diffusion penetrating the Fe-42Ni and FeSn2 grain contributed to the formation of the first layer and voids. Ni from Fe-42Ni can dissolve into Sn melt at the reaction temperature. The dissolved Ni formed platelets of Ni3Sn4 intermetallic compound inside a β-Sn matrix on solidification or on cooling. In contrast, Fe formed FeSn2 crystallines directly along the interface, because its activity was higher than that of Ni in a Sn liquid at reaction temperature. The joint of Fe-42Ni/Sn/Fe-42Ni, reacted for 2 min, had a joint strength of about 65 MPa, and maintained this high strength regardless of the reaction time.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kinna, M.A., Int. SAMPE Electron. Conf. 6, 547 (1992).Google Scholar
2.Johannes, W.R. and Johnson, W., Int. J. Microcircuits and Electronic Packaging 17, 135 (1994).Google Scholar
3.Stelmak, D.R. and J.I.Vesce, Natl. Electron. Packag. Prod. Conf. 1, 286 (1995).Google Scholar
4.Wassink, R.J. Klein, Soldering in Electronics: A Comprehensive Treatise on Soldering Technology for Surface Mounting and Through-Hole Techniques (Electrochemical Publications, Ayr, Scotland, 1989), p. 135202.Google Scholar
5.Sunwoo, A.J., Morris, J.W., and Lucey, G.K., Metal. Trans. 23A, 1323 (1992).CrossRefGoogle Scholar
6.Chan, Y.C., So, A.C.K., and Lai, J.K.L., Mater. Sci. Eng. B 55, 5 (1998).CrossRefGoogle Scholar
7.Ahat, S., Du, L., Sheng, M., Luo, L., Kempe, W., and Freytag, J., J. Electron. Mater. 29, 1105 (2000).CrossRefGoogle Scholar
8.Saiz, E., Cannon, R.M, and Tomsia, A.P., Acta Mater. 48, 4449 (2000).CrossRefGoogle Scholar
9.Liu, P.L. and Shang, J.K., Metall. Mater. Trans. 31A, 2867 (2000).CrossRefGoogle Scholar
10.Frear, D.R. and Vianco, P.T., Metall. Mater. Trans. 25A, 1509 (1994).CrossRefGoogle Scholar
11.Bernal, J.D., Nature 122, 54 (1928).CrossRefGoogle Scholar
12.Kang, S.K. and Ramachandran, V., Scripta Metall. 14, 421 (1980).CrossRefGoogle Scholar
13.Suganuma, K. and Nakamura, Y., J. Japan Inst. Metals 59, 1299 (1995).CrossRefGoogle Scholar
14.Suganuma, K. and Niihara, K., J. Mater. Res. 13, 2859 (1998).CrossRefGoogle Scholar
15.Hwang, C.W., Suganuma, K., Lee, J.G., and Mori, H., J. Electron. Mater. 32, 52 (2003).CrossRefGoogle Scholar
16.Hwang, C.W., Suganuma, K., Saiz, E., and Tomsia, A.P., Trans. JWRI 30, 167 (2001).Google Scholar
17.Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L., Binary Alloy Phase Diagram, 2nd ed. (ASM International, Materials Park, OH, 1990), p. 17741775.Google Scholar
18.Kim, H.K., Liou, H.K., and Tu, K.N., Appl. Phys. Lett. 66, 2337 (1995).CrossRefGoogle Scholar
19.Gur, D. and Bamberger, M., Acta Mater. 46, 4917 (1998)CrossRefGoogle Scholar
20.Villars, P., Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1997), pp. 18261827.Google Scholar
21.Havinga, E.E., Damsma, H., and Hokkeling, P., J. Less-Commom Metals 27, 169 (1972).CrossRefGoogle Scholar
22.Gabe, D.R., J. Iron Steel Inst. 204, 95 (1966)Google Scholar
23.Sarafianos, N., Mater. Sci. Technol. 3, 66 (1987)CrossRefGoogle Scholar
24.Biber, H.E. and Harter, W.T., J. Electrochem. Soc. 113, 828 (1966)CrossRefGoogle Scholar
25.Castell-Evans, J.V. and Wach, S., J. Iron Steel Inst. 211, 880 (1973)Google Scholar
26.Frankenthal, R.P. and Loginow, A.W., J. Electrochem. Soc. 107, 920 (1960)CrossRefGoogle Scholar
27.Biber, H.E., J. Electrochem. Soc. 113, 362 (1966)CrossRefGoogle Scholar
28.Gabe, D.R., Iron Steel 40, 118 (1967)Google Scholar
29.Ishida, T., Trans. JIM 14, 37 (1973).CrossRefGoogle Scholar
30.Lee, H.M., Yoon, S.W., and Lee, B.J., J. Electron. Mater. 27, 1161 (1998)CrossRefGoogle Scholar
31.Gaskell, D.R., Introduction to the Thermodynamics of Materials, 3rd ed. (Taylor & Francis, Washington, DC, 1995), pp. 219270.Google Scholar
32.Hultgren, R., Desai, D.D., Hawkins, D.T., Gleiser, M., Kelley, K.K., Selected Value of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Metals Park, OH, 1973), p. 884–887, 12381239.Google Scholar
33.Leach, J.S.L. and Bever, M.B., Trans. Met. Soc. AIME 215, 728 (1959).Google Scholar