Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-22T16:46:22.024Z Has data issue: false hasContentIssue false

Influence of Zr additives on the microstructure and oxidation resistance of Cu(Zr) thin films

Published online by Cambridge University Press:  03 March 2011

C.J. Liu
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701, Republic of China
J.S. Chen*
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701, Republic of China
*
a) Address all correspondence to this author. e-mail: jenschen@mail.ncku.edu.tw
Get access

Abstract

In this work, the microstructure and oxidation resistance of pure Cu, Cu(0.2 at.% Zr) and Cu(2.5 at.% Zr) alloy films deposited on SiO2/Si by sputtering were explored. Upon annealing, the Zr additives diffused to the free surface and reacted with the residual oxygen in the vacuum system. An additional ZrO2 layer formed and covered the Cu(2.5 at.% Zr) film surface after annealing at 700 °C for 30 min. Simultaneously, of the three films, the Cu(2.5 at.% Zr) film exhibited the highest degree of Cu(111) preferred orientation and the lowest degree of void growth upon annealing. Additionally, the Cu(2.5 at.% Zr) film pre-annealed at 700 °C showed a superior oxidation resistance when annealed at 200 °C in air for 15 min. Microstructure and oxidation resistance of Cu(Zr) alloy films were clearly affected by the ZrO2 layer formed via the segregation of Zr additives, and the connection is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murarka, S.P.: Multilevel interconnections for ULSI and GSI. Mater. Sci. Eng. R. 19, 87 (1997).CrossRefGoogle Scholar
2.Li, J., Vizkelethy, G., Revesz, P., Mayer, J.W. and Tu, K.N.: Oxidation and reduction of copper oxide thin films. J. Appl. Phys. 69, 1020 (1991).CrossRefGoogle Scholar
3.Lious, H.K., Huang, J.S. and Tu, K.N.: Oxidation of Cu and Cu3Ge thin film. J. Appl. Phys. 77, 5443 (1995).Google Scholar
4.Lanford, W.A., Ding, P.J., Wang, W., Hymes, S. and Muraka, S.P.: Low-temperature passivation of copper. Thin Solid Films 262, 234 (1995).CrossRefGoogle Scholar
5.Lee, W., Cho, H., Cho, B., Kim, J., Kim, Y.S., Jung, W.G., Kwon, H., Lee, J., Reucroft, P.J., Lee, C. and Lee, J.: Factors affecting passivation of Cu(Mg) Alloy films. J. Electrochem. Soc. 147, 3066 (2000).CrossRefGoogle Scholar
6.Igarashi, Y. and Ito, T.: Electromigration properties of copper-zirconium alloy interconnects. J. Vac. Sci. Technol. B 16, 2745 (1998).CrossRefGoogle Scholar
7.Rosenberg, R., Edelstein, D.C., Hu, C-K. and Rodbell, K.P.: Copper metallization for high performance silicon technology. Annu. Rev. Mater. Sci. 30, 229 (2000).CrossRefGoogle Scholar
8.Arias, D. and Abriata, J.P.: Binary Phase Diagrams, 2nd ed., edited by Massalski, T.B. (ASM International, Materials Park, OH, 1990), p. 1511.Google Scholar
9.Majumdar, D. and Chatterjee, D.: X-ray photoelectron spectroscopic studies on yttria, zirconia, and yttria-stabilized zirconia. J. Appl. Phys. 70, 988 (1991).CrossRefGoogle Scholar
10.Moulder, J.F., Stickle, W.F., Sobol, P.E. and Bomben, K.D.: Handbook of X-ray Photoelectron Spectroscopy(Physical Electronics, Inc., Eden Prairie, MN, 1995), p. 108.Google Scholar
11.Barin, I.: Thermochemical Data of Pure Substances, 3rd ed. (VCH, New York, 1995), pp. 1505, 1880.CrossRefGoogle Scholar
12.Liu, C.J., Chen, J.S. and Lin, Y.K.: Characterization of microstructure, interfacial reaction and diffusion of immiscible Cu(Ta) alloy thin film on SiO2 at elevated temperature. J. Electrochem. Soc. 151, G18 (2004).CrossRefGoogle Scholar
13.McLean, M. and Gale, B.: Surface energy anisotropy by an improved thermal grooving technique. Philos. Mag. 20, 1033 (1969).CrossRefGoogle Scholar
14.Kittel, C.: Introduction to Solid State Physics, 7th ed. (John Wiley & Sons, New York, 1996), p. 78.Google Scholar
15.Ryu, C., Loke, A.L.S., Nogami, T. and Wong, S.S.: Effect of texture on the electromigration of CVD copper. In Proceedings of 1997 IEEE International Reliability Physics Symposium, Denver, CO, edited by Goel, A.K., pp. 201205.Google Scholar
16.Wong, S.S., Ryu, C., Lee, H., Loke, A.L.S., Kwon, K.W., Bhattacharya, S., Eaton, R., Faust, R., Mikkola, B., Mucha, J. and Ormando, J.: Barrier/seed layer requirements for copper interconnects. In Proceedings of 1998 IEEE International Interconnect Technology Conference, edited by Havemann, R.H., 1998, pp. 107109.Google Scholar
17.ASTM Standard Designation E-112-82, Sec. 3, Vol. 03.03, 1984 Annual Book of ASTM Standards (ASTM, Philadelphia, PA, 1984), p. 126.Google Scholar
18.Lee, S.Y., Hummel, R.E. and DeHoff, R.T.: On the role of indium underlays in the prevention of thermal grooving in thin gold films. Thin Solid Films 149, 29 (1987).CrossRefGoogle Scholar
19.Miller, K.T., Lange, F.F. and Marshell, D.B.: The instability of polycrystalline thin films: Experiment and theory. J. Mater. Res. 5, 151 (1990).CrossRefGoogle Scholar
20.Weiss, D., Kraft, O. and Arzt, E.: Grain-boundary voiding in self-passivated Cu–1 at.% Al alloy films on Si substrates. J. Mater. Res. 17, 1363 (2002).CrossRefGoogle Scholar
21.Ding, P.J. and Lanford, W.A.: Oxidation resistant high conductivity copper films. Appl. Phys. Lett. 64, 2897 (1994).CrossRefGoogle Scholar
22. International Center for Diffraction Data Powder Diffraction File (ICDDPDF) No. 50-1089).Google Scholar
23.Li, J., Mayer, J.W. and Colgan, E.G.: Oxidation and protection in copper and copper alloy thin films. J. Appl. Phys. 70, 2820 (1991).CrossRefGoogle Scholar