Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T18:38:34.488Z Has data issue: false hasContentIssue false

Influence of thermal history on morphology and viscoelastic behavior of ethylene–1-octene copolymers synthesized with metallocene catalysts

Published online by Cambridge University Press:  31 January 2011

M. L. Cerrada*
Affiliation:
Instituto de Ciencia y Tecnología de Polímeros (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
R. Benavente
Affiliation:
Instituto de Ciencia y Tecnología de Polímeros (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
E. Pérez
Affiliation:
Instituto de Ciencia y Tecnología de Polímeros (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
*
a)Address all correspondence to this author.ictcg26@fresno.csic.es
Get access

Abstract

The relationships among structure and properties have been established in copolymers of ethylene and 1-octene, synthesized by a particular metallocene catalyst system. The most important factor affecting the structure and properties of these copolymers is, evidently, the comonomer content. However, the cooling treatment from the melt has been found to be also a very significant factor and, although its influence on the thermal properties is rather small, some structural parameters and the viscoelastic behavior are clearly dependent upon thermal history. These parameters include the degree of crystallinity, lattice constants, relaxation processes, stiffness, and microhardness of the samples. Regarding the viscoelastic behavior, the β relaxation is shifted to lower temperatures and its intensity is increased as 1-octene content raises. On the other hand, the α mechanism, associated with motions within the crystalline regions, is also moved to lower temperatures. Such a relaxation is only observed up to a certain 1-octene content in the copolymer.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gupta, V.K., in Handbook of Engineering Polymeric Materials, edited by Cheremisinoff, N.P. (Marcel Dekker, New York, 1997), Chapter 12, p. 155.Google Scholar
2.Bensason, S., Minick, J., Moet, A., Chum, S., Hiltner, A., and Baer, E., J. Polym. Sci., Part B: Polym. Phys. 34, 1301 (1996).3.0.CO;2-E>CrossRefGoogle Scholar
3.Minick, J., Moet, A., Hiltner, A., Baer, E., and Chum, S.P., J. Appl. Polym. Sci. 58, 1371 (1995).CrossRefGoogle Scholar
4.Wunderlich, B., Macromolecular Physics (Academic Press, New York, 1980), Vol. 3, p. 42.Google Scholar
5.McFaddin, D.C., Russel, K.E., Wy, G., and Heyding, R.D., J. Polym. Sci., Polym. Phys. 31, 175 (1993).CrossRefGoogle Scholar
6.Alamo, R., Domszy, R., and Mandelkern, L., J. Phys. Chem. 88, 6587 (1984).CrossRefGoogle Scholar
7.Alamo, R.G., Viers, B.D., and Manderkern, L., Macromolecules 26, 5740 (1993).Google Scholar
8.Shirayama, K., Kita, S-I., and Watabe, H., Makromol. Chem. 151, 97 (1972).CrossRefGoogle Scholar
9.VanderHart, D.L. and Pérez, E., Macromolecules 20, 1902 (1986).Google Scholar
10.Pérez, E., VanderHart, D.L., Crist, B., and Howard, P.R., Macromolecules 21, 78 (1987).Google Scholar
11.Alizadeh, A., Richardson, L., Xu, J., McCartney, S., Marand, H., Cheung, Y.W., and Chum, S., Macromolecules 32, 6221 (1999).CrossRefGoogle Scholar
12.Davis, G.T., Eby, R.K., and Colson, J.P., J. Appl. Phys. 41, 4316 (1970).CrossRefGoogle Scholar
13.Androsch, R., Blackwell, J., Chvalun, S.N., and Wunderlich, B., Macromolecules 32, 3735 (1999).CrossRefGoogle Scholar
14.Strobl, G.R. and Hagedorn, W., J. Polym. Sci., Polym. Phys. Ed. 16, 1181 (1978).Google Scholar
15.Glotin, M. and Mandelkern, L., Colloid Polym. Sci. 260, 182 (1982).CrossRefGoogle Scholar
16.Naylor, C.C., Meier, R.J., Kip, B.J., Williams, K.P.J., Mason, S.M., Conroy, N., and Gerrard, D.L., Macromolecules 28, 2969 (1995).CrossRefGoogle Scholar
17.Pérez, E., Benavente, R., Quijada, R., Narváez, A., and Galland, G.B., J. Polym. Sci., Part B: Polym. Phys. 38, 1440 (2000).3.0.CO;2-O>CrossRefGoogle Scholar
18.Simanke, A.G., Galland, G.B., Freitas, L., da Jornada, J.A.H., Quijada, R., and Mauler, R.S., Polymer 40, 5489 (1999).CrossRefGoogle Scholar
19.Rotter, G. and Ishida, H., Macromolecules 25, 2170 (1992).CrossRefGoogle Scholar
20.Schatzki, T.F., J. Polym. Sci. 57, 496 (1962).CrossRefGoogle Scholar
21.Arridge, R.G.C., Rev. Deform. Behav. Mater. 3, 249 (1981).Google Scholar
22.Boyd, R.H., Polymer 26, 1123 (1985).CrossRefGoogle Scholar
23.Boyer, R.F., Rubber Chem. Technol. 36, 1303 (1963).Google Scholar
24.Boyd, R.H. and Breitling, R.S., Macromolecules 7, 855 (1974).CrossRefGoogle Scholar
25.Boyd, R.H., J. Polym. Sci., Part B: Polym. Phys. 13, 2345 (1975).Google Scholar
26.Benavente, R., Pereña, J.M., Pérez, E., and Bello, A., Polymer 34, 2344 (1993).CrossRefGoogle Scholar
27.Benavente, R., Pereña, J.M., Pérez, E., Bello, A., and Lorenzo, V., Polymer 35, 3686 (1994).CrossRefGoogle Scholar
28.Heaton, N.J., Benavente, R., Pérez, E., Bello, A., and Pereña, J.M., Polymer 37, 3791 (1996).CrossRefGoogle Scholar
29.Popli, R. and Mandelkern, L., Polym. Bull. 9, 260 (1983).CrossRefGoogle Scholar
30.Popli, R., Glotin, M., Mandelkern, L., and Benson, R.S., J. Polym. Sci., Part B: Polym. Phys. 22, 407 (1984).Google Scholar
31.McCrum, N.G., Read, B.E., and Williams, G., Anelastic and dielectric effects in polymeric solids (Dover Publication, New York, 1991), Chapter 10, p. 353.Google Scholar
32.Ward, I.M., Mechanical Properties of Solids Polymers, 2nd ed. (J. Wiley and Sons, Chichester, England, 1985), Chapter 8, p. 166.Google Scholar
33.Cerrada, M.L., Benavente, R., Peña, B., and Pérez, E., Polymer 41, 5957 (2000).Google Scholar
34.Kavesh, S. and Schultz, J.M., J. Polym. Sci.: Part A-2, 8, 243 (1970).Google Scholar
35.Tadokoro, H., Structure of Crystalline Polymers (J. Wiley and Sons, New York, 1979).Google Scholar