Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-19T03:53:39.640Z Has data issue: false hasContentIssue false

Influence of deposition parameters on mechanical properties of sputter-deposited Cr2O3 thin films

Published online by Cambridge University Press:  31 January 2011

P. Hones
Affiliation:
EPFL-Institut de physique appliquée, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
F. Lévy
Affiliation:
EPFL-Institut de physique appliquée, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
N. X. Randall
Affiliation:
CSEM Instruments, Jaquet-Droz 1, CH-2007 Neuchâtel, Switzerland
Get access

Abstract

Among the oxides, Cr2O3 exhibits the highest hardness value and a low coefficient of friction. These properties make chromium oxide an excellent coating material for tribological applications. Cr2O3 thin films were deposited by radio-frequency reactive magnetron sputtering at substrate temperature in the range 363–593 K. The hardness and elastic modulus of the films were measured by two complementary nanoindentation techniques to investigate the influences of the substrate temperature and the oxygen content in the sputtering gas. While the continuous stiffness data method provides information throughout the whole film thickness, nanoindentation combined with scanning force microscopy of the residual imprints allows visualization of pileup, cracking, and delamination from the substrate. Hardness values up to 32 GPa were obtained for substrate temperatures exceeding 500 K and oxygen contents between 15% and 25% of the total gas pressure. The films, obtained with these deposition conditions, showed good adhesion to silicon substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Samsonov, G.V., The Oxide Handbook, 2nd ed. (IFI/Plenum, New York, 1982), pp. 192, 195.CrossRefGoogle Scholar
2.Zhang, J.L., Huang, J. and Ding, C., J. Therm. Spray Technol. 7, 242 (1998).CrossRefGoogle Scholar
3.Bhushan, B., Theunissen, G.S., and Li, X., Thin Solid Films 311, 67 (1997).CrossRefGoogle Scholar
4.Sundgren, J-E. and Hentzell, H.T.G, J. Vac. Sci. Technol, A 4, 2259 (1986).CrossRefGoogle Scholar
5.Zieren, V., Jongh, M.d., Groenou, A.B.v., Zon, J.B.v., Lansinski, P., and Theunissen, G.S., IEEE Trans. Magn. 30, 340 (1994).CrossRefGoogle Scholar
6.Loubet, J., Georges, J.M., Marchesini, D., and Meille, G., J. Tribology 106, 43 (1984).CrossRefGoogle Scholar
7.Page, T.F., Oliver, W.C., and McHargue, C.J., J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
8.Bhushan, B., Williams, V.S., and Shack, R.V., Trans. ASME J. Tribol. 110, 563 (1988).CrossRefGoogle Scholar
9.Nishibori, M. and Kinosita, K., Thin Solid Films 48, 325 (1978).CrossRefGoogle Scholar
10.Pollock, H.M., ASM Handbook (ASM International, Metals Park, OH, 1992), Vol. 18, pp. 419429.Google Scholar
11.Oliver, W.C., MRS Bull. XI(5), 1519 (1986).CrossRefGoogle Scholar
12.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
13.Lilleodden, E.T., Bonin, W., Nelson, J., Wyrobek, J.T., and Gerberick, W.W., J. Mater. Res. 10, 2162 (1995).CrossRefGoogle Scholar
14.Niedermann, P., Burger, J., Binggeli, M., Christoph, R., Hintermann, H., and Marti, O., The Ultimate Limits of Fabrication and Measurements, edited by Welland, M.E. and Gimzewski, J.K. (Proc. NATO ARW, Cambridge, England, 1994).Google Scholar
15.Randall, N.X., Christoph, R., Droz, S., and Julia-Schmutz, C., Thin Solid Films 290–291, 348 (1996).CrossRefGoogle Scholar
16.Hones, P., Sanjinés, R., and Lévy, F., Surf. Coat. Technol. 94/95, 398 (1997).CrossRefGoogle Scholar
17.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
18.Raman, V. and Berriche, B., J. Mater. Res. 7, 627 (1992).CrossRefGoogle Scholar
19.Mayo, M.J. and Nix, W.D., in Strength of Metals and Alloys, edited by Kettunen, P.O., Lepistö, T.K., and Lehtonen, M.E. (Pergamon, Oxford, 1988), p. 1415.Google Scholar
20.Randall, N.X., Julia-Schmutz, C., Soro, J-M., Von Stebut, J., and Zacharie, G., Thin Solid Films 308–309, 297 (1997).CrossRefGoogle Scholar
21.Reichardt, G., Eggenstein, F., Flechsig, U., Follath, R., Schäfers, F., Schmidt, J., and Senf, F., Groove profiles of soft X-ray diffraction gratings: AFM measurements, efficiency simulations and measurements, European Workshop on Microtechnology and Scanning Probe Microscopy, 1997.Google Scholar
22.Samsonov, G.F., The Oxide Handbook, 2nd ed. (IFI/Plenum, New York, 1982), p. 19.CrossRefGoogle Scholar
23.Kao, A.S., Doerner, M.F., and Novotny, V.J., J. Appl. Phys. 66, 5315 (1989).CrossRefGoogle Scholar
24.Yurkov, A.L., J. Mat. Sci. Lett. 12, 767 (1993).CrossRefGoogle Scholar
25.Li, X., Diao, D., and Bhushan, B., Acta Mater. 45, 4453 (1997).CrossRefGoogle Scholar