Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T04:36:50.188Z Has data issue: false hasContentIssue false

The increased interface charge transfer in dye-sensitized solar cells based on well-ordered TiO2 nanotube arrays with different lengths

Published online by Cambridge University Press:  31 March 2014

Lihong Qi*
Affiliation:
College of Science, Harbin Engineering University, Harbin 150001, People's Republic of China
Zhuoxun Yin
Affiliation:
College of Science, Harbin Engineering University, Harbin 150001, People's Republic of China
Shen Zhang
Affiliation:
College of Science, Harbin Engineering University, Harbin 150001, People's Republic of China
Qiuyun Ouyang
Affiliation:
College of Science, Harbin Engineering University, Harbin 150001, People's Republic of China
Chunyan Li*
Affiliation:
College of Science, Harbin Engineering University, Harbin 150001, People's Republic of China
Yujin Chen
Affiliation:
College of Science, Harbin Engineering University, Harbin 150001, People's Republic of China
*
a)Address all correspondence to this author. e-mail: lihongqi@hrbeu.edu.cn
Get access

Abstract

The well-ordered TiO2 nanotube arrays with controlled aspect ratio are fabricated via potentiostatic anodization. The aspect ratio of TiO2 nanotube array can be tuned conveniently by changing the water content in electrolyte and anodization time. The formation of well-ordered TiO2 nanotube array is good for the photogenerated electron transfer. So, the well-ordered TiO2 nanotube array photoelectrodes have been used to fabricate dye-sensitized solar cells (DSSCs). It is found that, with the optimum nanotube length and aspect ratio, DSSCs with TiO2 nanotube array photoelectrodes show better photoelectric conversion efficiency (2.60%) than that with TiO2 nanoparticles on Ti foil photoelectrode. It is elucidated by the interfacial electron transport of DSSCs, which are characterized quantitatively, using the electrochemical impedance spectra. The DSSC with optimal nanotube length and aspect ratio displays the fastest interfacial electron transfer and longer electron lifetime.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

O’Regan, B. and Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).10.1038/353737a0CrossRefGoogle Scholar
Bach, U., Lupo, D., Comte, P., Moser, J-E., Weissortel, F., Salbeck, J., Spreitzer, H., and Grätzel, M.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583 (1998).10.1038/26936CrossRefGoogle Scholar
Grätzel, M.: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788 (2009).10.1021/ar900141yCrossRefGoogle ScholarPubMed
Yella, A., Lee, H-W., Tsao, H-N., Yi, C., Chandiran, A-K., Nazeeruddin, M-K., Diau, E-W., Yeh, C-Y., Zakeeruddin, S-M., and Grätzel, M.: Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334, 629 (2011).10.1126/science.1209688CrossRefGoogle ScholarPubMed
Kim, Y-J., Lee, M-H., Kim, H-J., Lim, G., Choi, Y-S., Park, N., Kim, K., and Lee, W-I.: Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv. Mater. 21, 3668 (2009).10.1002/adma.200900294CrossRefGoogle Scholar
Zhang, Q-F., Park, K., Xi, J-T., Myers, D., and Cao, G-Z.: Recent progress in dye-sensitized solar cells using nanocrystallite aggregates. Adv. Energy Mater. 1, 988 (2011).10.1002/aenm.201100352CrossRefGoogle Scholar
Mishra, A., Fischer, M-K-R., and Bäuerle, P.: Metal-free organic dyes for dye-sensitized solar cells: From structure: Property relationships to design rules. Angew. Chem. Int. Ed. 48, 2474 (2009).10.1002/anie.200804709CrossRefGoogle ScholarPubMed
Shang, G-L., Wu, J-H., Huang, M-L., Lin, J-M., Lan, Z., Huang, Y-F., and Fan, L-Q.: Facile synthesis of mesoporous tin oxide spheres and their applications in dye-sensitized solar cells. J. Phys. Chem. C 116, 20140 (2012).10.1021/jp304185qCrossRefGoogle Scholar
O’Regan, B., Bakker, K., Kroeze, J., Smit, H., Sommeling, P., and Durrant, J-R.: Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanoparticle films. J. Phys. Chem. B 110, 17155 (2006).10.1021/jp062761fCrossRefGoogle ScholarPubMed
Sodergren, S., Hagfeldt, A., Olsson, J., and Lindquist, S-E.: Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J. Phys. Chem. 98, 5552 (1994).10.1021/j100072a023CrossRefGoogle Scholar
Pan, K., Dong, Y., Zhou, W., Wang, G., Pan, Q., Yuan, Y., Miao, X., and Tian, G.: TiO2-B nanobelt/anatase TiO2 nanoparticle heterophase nanostructure fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells. Electrochim. Acta 88, 263 (2013).10.1016/j.electacta.2012.10.066CrossRefGoogle Scholar
Martinson, A., Goes, M., Fabregat-Santiago, F., Bisquert, J., Pellin, M., and Hupp, J.: Electron transport in dye-sensitized solar cells based on ZnO nanotubes: Evidence for highly efficient charge collection and exceptionally rapid dynamics. J. Phys. Chem. A 113, 4015 (2009).10.1021/jp810406qCrossRefGoogle ScholarPubMed
Yang, L. and Leung, W.: Application of a bilayer TiO2 nanofiber photoanode for optimization of dye-sensitized solar cells. Adv. Mater. 23, 4559 (2011).10.1002/adma.201102717CrossRefGoogle ScholarPubMed
Liu, Z.Y. and Misra, M.: Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano 4, 2196 (2010).10.1021/nn9015696CrossRefGoogle ScholarPubMed
Zhang, G., Pan, K., Zhou, W., Qu, Y., Pan, Q., Jiang, B., Tian, G., Wang, G., Xie, Y., Dong, Y., Miao, X., and Tian, C.: Anatase TiO2 pillar–nanoparticle composite fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells. Dalton Trans. 41, 12683 (2012).10.1039/c2dt31046eCrossRefGoogle ScholarPubMed
Tan, B. and Wu, Y.: Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J. Phys. Chem. B 110, 15932 (2006).10.1021/jp063972nCrossRefGoogle ScholarPubMed
Yang, M., Jha, H., Liu, N., and Schmuki, P.: Increased photocurrent response in Nb-doped TiO2 nanotubes. J. Mater. Chem. 21, 15205 (2011).10.1039/c1jm12961aCrossRefGoogle Scholar
Zhu, K. and Frank, A-J.: Converting light to electrons in oriented nanotube arrays used in sensitized solar cells. MRS Bull. 36, 446 (2011).10.1557/mrs.2011.112CrossRefGoogle Scholar
Wang, J. and Lin, Z-Q.: Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem. Mater. 22, 579 (2010).10.1021/cm903164kCrossRefGoogle Scholar
Yang, M., Kim, D., Jha, H., Lee, K., Paul, J., and Schmuki, P.: Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chem. Commun. 47, 2032 (2011).10.1039/C0CC04993JCrossRefGoogle ScholarPubMed
Hsiao, P-T., Liou, Y-J., and Teng, H.: Electron transport patterns in TiO2 nanotube arrays based dye-sensitized solar cells under frontside and backside illuminations. J. Phys. Chem. C 115, 15018 (2011).10.1021/jp202681cCrossRefGoogle Scholar
Paulose, M., Shankar, K., Varghese, O-K., Mor, G-K., Hardin, B., and Grimes, C-A.: Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 17, 1446 (2006).10.1088/0957-4484/17/5/046CrossRefGoogle Scholar
Paulose, M., Shankar, K., Varghese, O-K., Mor, G-K., and Grimes, C-A.: Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J. Phys. D: Appl. Phys. 39, 2498 (2006).10.1088/0022-3727/39/12/005CrossRefGoogle Scholar
Roy, P., Kim, D., Lee, K., Spiecker, E., and Schmuki, P.: TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2, 45 (2010).10.1039/B9NR00131JCrossRefGoogle ScholarPubMed
Liu, Z., Zhang, X., Nishimoto, S., Jin, M., Tryk, D-A., Murakami, T., and Fujishima, A.: Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J. Phys. Chem. C 112, 253 (2008).10.1021/jp0772732CrossRefGoogle Scholar
Shankar, K., Mor, G-K., Fitzgerald, A., and Grimes, C-A.: Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotubes in formamide-water mixtures. J. Phys. Chem. C 111, 21 (2007).10.1021/jp066352vCrossRefGoogle Scholar
Qi, L., Ma, Y., Ouyang, Q., Zhang, Y., Li, L., and Chen, Y.: The controllable synthesis of chain-like TiO2 networks with multiwalled carbon nanotubes as templates and its application for dye-sensitized solar cells. J. Nanopart. Res. 14, 907 (2012).CrossRefGoogle Scholar
Mor, G-K., Shankar, K., Paulose, M., Varghese, O-K., and Grimes, C-A.: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191 (2005).CrossRefGoogle ScholarPubMed
Pan, K., Dong, Y-Z., Tian, C-G., Zhou, W., Tian, G-H., Zhao, B-F., and Fu, H-G.: TiO2-B narrow nanobelt/TiO2 nanoparticle composite photoelectrode for dye-sensitized solar cells. Electrochim. Acta 54, 7350 (2009).CrossRefGoogle Scholar
Longo, C., Nogueira, A-F., De Paoli, M-A., and Cachet, H.: Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy. J. Phys. Chem. B 106, 5925 (2002).CrossRefGoogle Scholar