Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T13:31:10.924Z Has data issue: false hasContentIssue false

In situ high-energy x-ray diffraction observation of structural evolution in a Ti-based bulk metallic glass upon heating

Published online by Cambridge University Press:  31 January 2011

N. Zheng*
Affiliation:
IFW Dresden, Institute for Complex Materials, D-01069 Dresden, Germany
G. Wang
Affiliation:
IFW Dresden, Institute for Complex Materials, D-01069 Dresden, Germany
L.C. Zhang
Affiliation:
School of Mechanical Engineering, The University of Western Australia, Crawley, Perth, WA 6009, Australia
M. Calin
Affiliation:
IFW Dresden, Institute for Complex Materials, D-01069 Dresden, Germany
M. Stoica
Affiliation:
IFW Dresden, Institute for Complex Materials, D-01069 Dresden, Germany
G. Vaughan
Affiliation:
European Synchrotron Radiation Facilities ESRF, F-38042 Grenoble, France
N. Mattern
Affiliation:
IFW Dresden, Institute for Complex Materials, D-01069 Dresden, Germany
J. Eckert
Affiliation:
IFW Dresden, Institute for Complex Materials, D-01069 Dresden, Germany; and TU Dresden, Institute of Materials Science, D-01062 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: n.zheng@ifw-dresden.de
Get access

Abstract

The structural evolution of the Ti40Zr10Cu34Pd14Sn2 bulk metallic glass (BMG) upon was investigated by means of in situ high-energy x-ray diffraction. The position, width, and intensity of the first peak in diffraction patterns are fitted through Voigt function below 800 K. All the peak position, width, and intensity values show a nearly linear increase with the increasing temperature to the onset temperature of structural relaxation, Tr = 510 K. However, these values start to deviate from the linear behavior between Tr and Tg (the glass transition temperature). The changes in free volume and the coefficient of volume thermal expansion prove that the aforementioned phenomenon is closely related to the structural relaxation releasing excess free volume arrested during rapid quenching of the BMG. Above 800 K, three crystallization events are detected and the first exothermic event is due to the formation of metastable nanocrystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy

References

REFERENCES

1.Zhang, T., Inoue, A.: Ti-based amorphous alloys with a large supercooled liquid region. Mater. Sci. Eng., A 304, 771 (2001)CrossRefGoogle Scholar
2.Duan, G., Wiest, A., Lind, M.L., Kahl, A., Johnson, W.L.: Lightweight Ti-based bulk metallic glasses excluding late transition metals. Scr. Mater. 58, 465 (2008)CrossRefGoogle Scholar
3.Huang, Y.J., Shen, J., Sun, J.F., Yu, X.B.: A new Ti–Zr–Hf–Cu–Ni–Si–Sn bulk amorphous alloy with high glass-forming ability. J. Alloys Compd. 427, 171 (2007)CrossRefGoogle Scholar
4.Park, J.M., Chang, H.J., Han, K.H., Kim, W.T., Kim, D.H.: Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses. Scr. Mater. 53, 1 (2005)CrossRefGoogle Scholar
5.Ma, C.L., Ishihara, S., Soejima, H., Nishiyama, N., Inoue, A.: Formation of new Ti-based metallic glassy alloys. Mater. Trans. 45, 1802 (2004)CrossRefGoogle Scholar
6.Kim, Y.C., Kim, W.T., Kim, D.H.: A development of Ti-based bulk metallic glass. Mater. Sci. Eng., A 375, 127 (2004)CrossRefGoogle Scholar
7.Bae, D.H., Park, J.M., Na, J.H., Kim, D.H., Kim, Y.C., Lee, J.K.: Deformation behavior of Ti–Zr–Ni–Cu–Be metallic glass and composite in the supercooled liquid region. J. Mater. Res. 19, 937 (2004)CrossRefGoogle Scholar
8.Calin, M., Zhang, L.C., Eckert, J.: Tailoring of microstructure and mechanical properties of a Ti-based bulk metallic glass-forming alloy. Scr. Mater. 57, 1101 (2007)CrossRefGoogle Scholar
9.Zhang, L.C., Xu, J., Ma, E.: Consolidation and properties of ball-milled Ti50Cu18Ni22Al4Sn6 glassy alloy by equal channel angular extrusion. Mater. Sci. Eng., A 434, 280 (2006)CrossRefGoogle Scholar
10.Zhang, L.C., Xu, J., Eckert, J.: Thermal stability and crystallization kinetics of mechanically alloyed TiC/Ti-based metallic glass matrix composite. J. Appl. Phys. 100, 033514 (2006)CrossRefGoogle Scholar
11.Zhang, L.C., Shen, Z.Q., Xu, J.: Mechanically milling-induced amorphization in Sn-containing Ti-based multicomponent alloy systems. Mater. Sci. Eng., A 394, 204 (2005)CrossRefGoogle Scholar
12.Zhang, L.C., Xu, J., Ma, E.: Mechanically alloyed amorphous Ti50(Cu0.45Ni0.55)44–xAlxSi4B2 alloys with supercooled liquid region. J. Mater. Res. 17, 1743 (2002)CrossRefGoogle Scholar
13.Zhu, S.L., Wang, X.M., Inoue, A.: Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters of up to 1 cm. Intermetallics 16, 1031 (2008)CrossRefGoogle Scholar
14.Guo, F.Q., Wang, H.J., Poon, S.J., Shiflet, G.J.: Ductile titanium-based glassy alloy ingots. Appl. Phys. Lett. 86, 091907 (2005)CrossRefGoogle Scholar
15.Hofmann, D.C., Suh, J.Y., Wiest, A., Lind, M.L., Demetriou, M.D., Johnson, W.L.: Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proc. Natl. Acad. Sci. U.S.A. 105, 20136 (2008)CrossRefGoogle ScholarPubMed
16.Kim, Y.C., Na, J.H., Park, J.M., Kim, D.H., Lee, J.K., Kim, W.T.: Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glass. Appl. Phys. Lett. 83, 3093 (2003)CrossRefGoogle Scholar
17.Mattern, N., Bednarcik, J., Pauly, S., Wang, G., Das, J., Eckert, J.: Structural evolution of Cu–Zr metallic glasses under tension. Acta Mater. 57, 4133 (2009)CrossRefGoogle Scholar
18.Stoica, M., Das, J., Bednarčik, J., Wang, G., Vaughan, G., Wang, W.K., Eckert, J.: Mechanical response of metallic glasses: Insights from in-situ high energy x-ray diffraction. JOM 62, 76 (2010)CrossRefGoogle Scholar
19.Wang, G., Mattern, N., Pauly, S., Bednarčik, J., Eckert, J.: Atomic structure evolution in bulk metallic glass under compressive stress. Appl. Phys. Lett. 95, 251906 (2009)CrossRefGoogle Scholar
20.Wang, G., Shen, J., Sun, J.F., Zhou, B.D., FitzGerald, J.D., Llewellyn, D.J., Stachurski, Z.H.: Isothermal nanocrystallization behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk metallic glass in the supercooled liquid region. Scr. Mater. 53, 641 (2005)CrossRefGoogle Scholar
21.Wang, D.J., Huang, Y.J., Zou, J., Auchterlonie, G.J., Jack, K.S., Shen, J.: Metastable nanocrystallization behavior of Ti-based metallic glassy powders during post-heating. Scr. Mater. 63, 764 (2010)CrossRefGoogle Scholar
22.Calin, M., Stoica, M., Eckert, J., Yavari, A.R., Schultz, L.: Glass formation and crystallization of Cu47Ti33Zr11Ni8X1 (X = Fe, Si, Sn, Pb) alloys. Scr. Mater. 392, 169 (2005)Google Scholar
23.Zhang, L.C., Xu, J.: Glass-forming ability of melt-spun multicomponent (Ti, Zr, Hf)–(Cu, Ni, Co)–Al alloys with equiatomic substitution. J. Non-Cryst. Solids 347, 166 (2004)CrossRefGoogle Scholar
24.Wang, G., Shen, J., Qin, Q., Sun, J., Stachurski, Z., Zhou, B.: Investigation of deformation behavior of Zr–Ti–Ni–Cu–Be bulk metallic glass containing nanocrystals. J. Mater. Sci. 40, 4561 (2005)CrossRefGoogle Scholar
25.Yavari, A.R., Le Moulec, A., Inoue, A., Nishiyama, N., Lupu, N., Matsubara, E., Botta, W.J., Vaughan, G., Di Michiel, M., Kvick, A.: Excess free volume in metallic glasses measured by x-ray diffraction. Acta Mater. 53, 1611 (2005)CrossRefGoogle Scholar
26.Pineda, E., Boneu, F., Bruna, P., Pradell, T., Labrador, A., Crespo, D.: Structural evolution of metallic glasses during annealing through in situ synchrotron x-ray diffraction. J. Non-Cryst. Solids 354, 5140 (2008)CrossRefGoogle Scholar
27.Egami, T.: Understanding the properties and structure of metallic glasses at the atomic level. JOM 62, 70 (2010)CrossRefGoogle Scholar
28.Dmowski, W., Fan, C., Morrison, M.L., Liaw, P.K., Egami, T.: Structural changes in bulk metallic glass after annealing below the glass-transition temperature. Mater. Sci. Eng., A 471, 125 (2007)CrossRefGoogle Scholar
29.Lee, B.S., Burr, G.W., Shelby, R.M., Raoux, S., Rettner, C.T., Bogle, S.N., Darmawikarta, K., Bishop, S.G., Abelson, J.R.: Observation of the role of subcritical nuclei in crystallization of a glassy solid. Science 326, 980 (2009)CrossRefGoogle ScholarPubMed
30.Greer, A.L.: Metallic glasses… on the threshold. Mater. Today 12, 14 (2009)CrossRefGoogle Scholar
31.Zhang, H., Zhang, B.W., Tan, Z.S., Wu, L.J.: Correlation between the structure and internal friction of metallic glass Cu45Ti55. Metall. Mater. Trans. A 23, 1627 (1992)Google Scholar