Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-07T02:44:21.524Z Has data issue: false hasContentIssue false

In situ bulge testing in an atomic force microscope: Microdeformation experiments of thin film membranes

Published online by Cambridge University Press:  31 January 2011

E.W. Schweitzer*
Affiliation:
University Erlangen–Nürnberg, Department of Materials Science and Engineering, Institute I, D-91058 Erlangen, Germany
M. Göken
Affiliation:
University Erlangen–Nürnberg, Department of Materials Science and Engineering, Institute I, D-91058 Erlangen, Germany
*
a)Address all correspondence to this author. e-mail: elmar.schweitzer@ww.uni-erlangen.de
Get access

Abstract

A new bulge testing setup for the measurement of the mechanical properties of thin films is presented. This self-built device can be incorporated in an atomic force microscope (AFM), which allows the recording of topographic images of the observed sample membranes under load conditions. Bulge test experiments on different silicon nitride films are presented and compared to nanoindentation experiments. The measured elastic moduli from nanoindentation and bulge testing are in good agreement. Apart from that, the ability to extract stress–strain data from AFM scans is shown, and the results are compared to standard bulge testing experiments. Imaging of the sample microstructure under load conditions is demonstrated on a thin Cu film.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Arzt, E.: Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46, 5611 1998CrossRefGoogle Scholar
2Beams, J.W.: Mechanical properties of thin films of gold and silverProceedings, International Conference on Structure and Properties of Thin Films Bolton Landing, NY 1959 edited by C.A. Neugebauer, J.B. Newkirk, and D.A. Vermilya (John Wiley, New York) 1959 183–192Google Scholar
3Tabata, O., Kawahata, K., Sugiyama, S.Igarashi, I.: Mechanical property measurements of thin films using load–deflection of composite rectangular membranes. Sens. Actuators, A 20, 135 1989CrossRefGoogle Scholar
4Karimi, A., Shojaei, O.R., Kruml, T.Martin, J.L.: Characterisation of tin thin films using the bulge test and the nanoindentation technique. Thin Solid Films 308-309, 334 1997CrossRefGoogle Scholar
5Xiang, Y., Chen, X.Vlassak, J.J.: Plain-strain bulge test for thin films. J. Mater. Res. 20, 2360 2005CrossRefGoogle Scholar
6Binnig, G., Quante, C.F.Gerber, Ch.: Atomic force microscope. Phys. Rev. Lett. 56, 930 1986CrossRefGoogle ScholarPubMed
7Vlassak, J.J.Nix, E.D.: A new bulge testing technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7, 3242 1992CrossRefGoogle Scholar
8Bromley, E.I., Randall, J.N., Flanders, D.C.Mountain, R.W.: A technique for the determination of stress in thin films. J. Vac. Sci. Technol., B 1, 1364 1993CrossRefGoogle Scholar
9Kalman, A.J., Verbruggen, A.H.Jannsen, G.C.A.M.: A novel bulge-testing seup for rectangular free-standing thin films. Rev. Sci. Instrum. 70, 4026 1999CrossRefGoogle Scholar
10Catlin, A.Walker, W.P.: Mechanical properties of thin single-crystal gold films. J. Appl. Phys. 31, 2135 1960CrossRefGoogle Scholar
11Small, M.K.Nix, W.D.: Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films. J. Mater. Res. 7, 1553 1992CrossRefGoogle Scholar
12Durst, K., Göken, M.Vehoff, H.: Finite element study for nanoindentation measurements on two-phase materials. J. Mater. Res. 19, 85 2004CrossRefGoogle Scholar
13Göken, M., Kempf, M., Bordenet, M.Vehoff, H.: Nanomechanical characterization of metals and thin films. Surf. Interface Anal. 27, 302 19993.0.CO;2-D>CrossRefGoogle Scholar
14Oliver, W.C.Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992CrossRefGoogle Scholar
15Hütte—Das Ingenieurwissen, 32nd ed., edited by H. Czichos and M. Hennecke (Springer-Verlag, Heidelberg 2004 E66Google Scholar
16Jung, Y-G., Lawn, B.R., Martyniuk, M., Huang, H.Hu, X.Z.: Evaluation of elastic modulus and hardness of thin films by nanoindentation. J. Mater. Res. 19, 3076 2004CrossRefGoogle Scholar
17Reinberg, A.R.: Plasma deposition of inorganic thin films. Annu. Rev. Mater. Sci. 9, 341 1979CrossRefGoogle Scholar
18manual, User: Dimension 3100™ Scanning Probe Microscope, Digital Instruments–Veeco Metrology Group, Chadds Ford, PA, 2003Google Scholar
19Vlassak, J.J.: New experimental techniques and analysis methods for the study of mechanical properties of materials in small volumes. Ph.D. Dissertation, Stanford University, Stanford, CA, 1994Google Scholar