Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-17T05:18:21.620Z Has data issue: false hasContentIssue false

High-temperature powder x-ray diffraction of yttria to melting point

Published online by Cambridge University Press:  31 January 2011

V. Swamy
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstrasse 5, D-70569 Stuttgart, Germany
N. A. Dubrovinskaya
Affiliation:
Institute of Earth Sciences, Uppsala University, Norbyvägen 18 B, S-75236 Uppsala, Sweden
L. S. Dubrovinsky
Affiliation:
Institute of Earth Sciences, Uppsala University, Norbyvägen 18 B, S-75236 Uppsala, Sweden
Get access

Abstract

Powder x-ray diffraction data of yttria (Y2O3) were obtained from room temperature to melting point with the thin wire resistance heating technique. A solid-state phase transition was observed at 2512 ± 25 K and melting of the high-uemperature phase at 2705 ± 25 K. Thermal expansion data for α–Y2O3 (C-type) are given for the range 298–2540 K. The unit cell parameter increases nonlinearly, especially just before the solid-state transition. The x-ray diffraction spectrum of the high-temperature phase is consistent with the fluorite-type structure (space group Fm3) with a refined unit cell parameter a = 5.3903(6) Å at 2530 K. The sample recrystallized rapidly above 2540 K, and above 2730 K, all the diffraction lines and spots disappeared from the x-ray diffraction spectrum that suggests complete melting.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lejus, A. M. and Collongues, R., in Current Topics in Material Science, edited by Kaldis, E. (North-Holland Publishing Company, Amsterdam, 1980), Vol. 4, p. 481.Google Scholar
2.Rhodes, W.H., in Phase Diagrams in Advanced Ceramics, edited by Alper, A.M. (Academic Press, San Diego, CA, 1995), p. 1.Google Scholar
3.Foex, M., High Temp.-High Press. 9, 269 (1977).Google Scholar
4.Cabannes, F., Loc, V. T., Coutures, J-P., and Foex, M., High Temp.-High Press. 8, 391 (1976).Google Scholar
5.Skaggs, S.R., High Temp. Sci. 9, 197 (1977).Google Scholar
6.Taylor, D., Brit. Ceram. Trans. J. 83, 92 (1984).Google Scholar
7.Foex, M. and Traverse, J-P., Rev. Int. Hautes Temp. Refract. 3, 429 (1966).Google Scholar
8.Hoekstra, H.R. and Gingerich, K. A., Science 146, 1163 (1964).CrossRefGoogle Scholar
9.Katagiri, S., Ishizawa, N., and Marumo, F., Powder Diffraction 8, 60 (1993).CrossRefGoogle Scholar
10.Yamada, T., Yoshimura, M., and Somiya, S., High Temp.-High Press. 18, 377 (1986).Google Scholar
11.McMillan, P.F., Poe, B. T., Gillet, Ph., and Reynard, B., Geochim. Cosmochim. Acta 58, 3653 (1994).CrossRefGoogle Scholar
12.Dubrovinsky, L.S. and Saxena, S. K., Phys. Chem. Minerals 24, 547 (1997).CrossRefGoogle Scholar
13.Carlson, O. N., Bull. Alloy Phase Diagrams 11, 61 (1990).CrossRefGoogle Scholar
14.Shpil'rain, E.E., Kagan, D. N., Barkhatov, L. S., Zhmakin, L. I., and Koroleva, V. V., High Temp.-High Press. 11, 539 (1979).Google Scholar
15.Lopato, L.M., Shevchenko, A. V., Kushchevskii, A. E., and Tresvyatskii, S. G., Neorgan. Mater. 10, 1481 (1974).Google Scholar
16.Shpil'rain, E. E., Kagan, D. N., Barkhatov, L. S., and Koroleva, V. V., High Temp.-High Press. 8, 183 (1976).Google Scholar
17.Mizuno, M., Yamada, T., Kawakami, S., and Ishii, E., Yogyo-Kyokai-Shi 93, 404 (1985).CrossRefGoogle Scholar
18.Adylov, G. T., Voronov, G. V., Mansurova, E. P., Sigalov, L. M., and Urazaeva, E. M., Russ. J. Inorg. Chem. 33, 1062 (1988).Google Scholar
19.Andrievskaya, E. R., Zaitseva, Z. A., Shevchenko, A. V., and Lopato, L. M., Neorgan. Mater. 33, 465 (1997).Google Scholar