Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T07:55:37.873Z Has data issue: false hasContentIssue false

High-resolution electron microscopy of diamond hexagonal silicon in low pressure chemical vapor deposited polycrystalline silicon

Published online by Cambridge University Press:  31 January 2011

Hans Cerva
Affiliation:
Siemens AG Research Laboratories, Otto Hahn Ring 6, D 8000 München 83, Germany
Get access

Abstract

Thin poly-Si layers deposited at 625 °C by LPCVD that are used in silicon technology for microelectronics exhibit a pronounced additional x-ray diffraction peak at about 0.334 nm. High-resolution electron microscopy (HREM) reveals that this peak stems from {010} reflections of a diamond hexagonal (dh) Si phase, which occurs as small inclusions with the orientation relationship (01) ‖ (0001), [011] ‖ [20] to the diamond cubic (dc) Si matrix. Due to the high density of planar faults on {111}, the dh-Si phase also exists in the form of the 2H silicon polytype with the orientation relationship (1) ‖ (0001), [011] ‖ [20]. In the first case the formation of the dh-Si phase may be understood by a multiple twinning transformation process, and in the second case by glide of Shockley partial dislocations on {111} planes. Various other hexagonal polytypes occur, which have all the {010} reflections in common and make a major contribution to the 0.334 nm peak. The medium temperature of 625 °C for layer deposition leads to a 〈011〉 preferential orientation and a high density of twins as well as to high compressive stress in the poly-Si layer itself. This seems to promote the formation of dh-Si. The strong twinning behavior produces a typical tilt grain boundary between adjacent dh-Si grains: [20], (016), Θ = 35°with a translation vector t = 1/2[031] parallel to it. The dh-Si phase vanishes in this poly-Si film after annealing at temperatures above 1000 °C due to grain growth by recrystallization.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kamins, T. I., Polycrystalline Silicon for Integrated Circuit Applications (Kluwer Academic Publishers, Boston, MA, 1988).CrossRefGoogle Scholar
2.Cerva, H. and Oppolzer, H., Springer Proceedings in Physics 35, 354 (1989).CrossRefGoogle Scholar
3.Harbeke, G., Krausbauer, L., Steigmeier, E. F., Widmer, A. E., Kappert, H. F., and Neugebauer, G., J. Electrochem. Soc. 131, 675 (1984).CrossRefGoogle Scholar
4.Hendriks, M., Radelaar, S., Beers, A. M., and Bloem, J., Thin Solid Films 113, 59 (1984).CrossRefGoogle Scholar
5.Pirouz, P., Chaim, R., Dahmen, U., and Westmacott, K. H., Acta Metall. Mater. 38, 313 (1990); 38, 323 (1990); 38, 329 (1990).CrossRefGoogle Scholar
6.Tan, T. Y., Föil, H., and Hu, S. M., Philos. Mag. A 44, 127 (1981).CrossRefGoogle Scholar
7.Bergholz, W., Zoth, G., Wendt, H., Sauter, S., and Asam, G., Siemens Res. Dev. Rep. 16, 241 (1987).Google Scholar
8.Ishida, Y. and Ichinose, H., Springer Proceedings in Physics 35, 42 (1989).CrossRefGoogle Scholar
9.Cerva, H. and Oppolzer, H., in High Resolution Electron Microscopy of Defects in Materials, edited by Sinclair, R., Smith, D. J., and Dahmen, U. (Mater. Res. Soc. Symp. Proc. 183, Pittsburgh, PA, 1990), p. 67.Google Scholar
10.Carter, C. B., Philos. Mag. A 50, 133 (1984).CrossRefGoogle Scholar
11.Stadelmann, P. A., Ultramicroscopy 21, 131 (1987).CrossRefGoogle Scholar
12.d'Anterroches, C. and Bourret, A., Philos. Mag. A 49, 783 (1984).CrossRefGoogle Scholar
13.Bourret, A., Inst. Phys. Conf. Ser. No. 87, 39 (1987).Google Scholar
14.Dahmen, U., Hetherington, C. J., Pirouz, P., and Westmacott, K. H., Scripta Metall. 23, 269 (1989).CrossRefGoogle Scholar
15.Föil, H. and Carter, C. B., Philos. Mag. A 40, 497 (1979).CrossRefGoogle Scholar
16.Maeda, K., Suzuki, K., Fujita, S., Ichihara, M., and Hyodo, S., Philos. Mag. A 57, 573 (1988).CrossRefGoogle Scholar
17.Ramsdell, L. S., Am. Mineral. 32, 64 (1947).Google Scholar
18.Glaisher, R. W., Spargo, A. E. C., and Smith, D. J., Ultramicroscopy 27, 117 (1989).CrossRefGoogle Scholar
19.Bender, H., Veirman, A. De, Landuyt, J.Van, and Amelinckx, S., Appl. Phys. A 39, 83 (1986).CrossRefGoogle Scholar
20.Pirouz, P., Yang, J., Ernst, F., and Möller, H-J., in High Resolution Microscopy of Materials, edited by Krakow, W., Ponce, F. A., and Smith, D. J. (Mater. Res. Soc. Symp. Proc. 139, Pittsburgh, PA, 1989), p. 199.Google Scholar
21.Hetherington, C. J. D., Dahmen, U., Pirouz, P., and Westmacott, K. H., in Proc. 47th Meeting of the Electron Microscopy Society of America, edited by Bailey, G. W. (San Francisco Press Inc., San Francisco, CA, 1989), pp. 132133.Google Scholar
22.Pashley, D. W. and Stowell, M. J., Philos. Mag. 8, 1605 (1963).CrossRefGoogle Scholar
23.Lereah, Y. and Gruenbaum, E., Philos. Mag. A 50, 1 (1984).CrossRefGoogle Scholar
24.Adamczewska, J. and Budzynski, T., Thin Solid Films 113, 271 (1984).CrossRefGoogle Scholar
25.Guckel, H., Randazzo, T., and Burns, D. W., J. Appl. Phys. 57, 1671 (1985).CrossRefGoogle Scholar
26.Koleshko, V. M., Belitsky, V. F., and Kiryushin, I. V., Thin Solid Films 165, 181 (1988).CrossRefGoogle Scholar
27.Pirouz, P., Scripta Metall. 21, 1463 (1987).CrossRefGoogle Scholar
28.Pirouz, P., Scripta Metall. 23, 401 (1989).CrossRefGoogle Scholar
29.Pirouz, P., Inst. Phys. Conf. Ser. No. 104, 49 (1989).Google Scholar
30.Das, G., J. Appl. Phys. 44, 4459 (1973).CrossRefGoogle Scholar
31.Bourret, A. and Schröter, W., Ultramicroscopy 14, 97 (1984).CrossRefGoogle Scholar
32.Kamins, T. I. and Turner, J. E., Solid State Technology, 80 (April 1990).Google Scholar