Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T02:47:38.992Z Has data issue: false hasContentIssue false

Heteroepitaxy of diamond on c-BN: Growth mechanisms and defect characterization

Published online by Cambridge University Press:  03 March 2011

Alberto Argoitia
Affiliation:
Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7217
John C. Angus
Affiliation:
Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7217
Jing S. Ma
Affiliation:
Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7217
Long Wang
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7217
Pirouz Pirouz
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7217
Walter R.L. Lambrecht
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7217
Get access

Abstract

Diamond films grown on {100}, {111} boron-terminated, and nitrogen-terminated facets of cubic boron nitride (c-BN) single crystals were characterized by Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The evolution of morphology and microstructure of the diamond films at different stages during the growth process were followed by SEM investigation. The results indicate that diamond growth proceeds by nucleation of oriented three-dimensional islands followed by their coalescence. Cross-sectional TEM specimens were prepared from thick (over 10 μm) continuous diamond films grown on {111} boron-terminated surfaces. Selected-area diffraction and high resolution TEM images show that the diamond film has a parallel orientation relationship with respect to the substrate. Characteristic defects, common to diamond films obtained by chemical vapor deposition on other substrates, are also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1DeVries, R. C., General Electric, Tech. Inf. Series, No. 72CRD178, June (1972).Google Scholar
2Harris, D. C., Naval Research Reviews XLIV, 3 (1992).Google Scholar
3Jones, B. L., Mater. Sci. Eng. B 11, 149 (1992).CrossRefGoogle Scholar
4Geis, M. and Angus, J. C., Sci. Am. 267, 84 (1992).CrossRefGoogle Scholar
5Yoder, M. N., Naval Research Reviews XLIV, 17 (1992).Google Scholar
6Eversole, W. G., U.S. Patent 3 030187 (1962); U.S. Patent 3 030188 (1962).Google Scholar
7Angus, J. C., Will, H. A., and Stanko, W. S., J. Appl. Phys. 39, 2915 (1968).CrossRefGoogle Scholar
8Deryagin, B. V., Fedoseev, D. V., Spitsyn, B. V., Lukyanovich, D. V., Ryabov, B. V., and Lavrentev, A. V., J. Cryst. Growth 2, 380 (1968).CrossRefGoogle Scholar
9Angus, J. C., Garner, N. C., Poferl, D. J., Chauhan, S. P., Dyble, T. J., and Sung, P., Sin. Almazy 3, 3840, presented at Int. Conf. on Applications of Synthetic Diamond in Industry, Kiev (1971).Google Scholar
10Deryagin, B. V., Spitsyn, B. V., Builov, L. L., Klochkov, A. A., Gurodetski, A. E., and Smolyaninov, A. V., Dokl. Akad. Nauk SSSR 231, 333 (1976).Google Scholar
11Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys., Part 2, 21, L183 (1982).CrossRefGoogle Scholar
12Matsumoto, S., Sato, Y., Tsutsumi, M., and Setaka, N., J. Mater. Sci. 17, 3106 (1982).CrossRefGoogle Scholar
13Geis, M. W., Smith, H. J., Argoitia, A., Angus, J. C., Ma, G. M., Glass, J. T., Butler, J., Robinson, C. J., and Pryor, R., Appl. Phys. Lett. 58, 2485 (1991).Google Scholar
14Parikh, N. R., Hunn, J. D., McGucken, E., Swanson, M. L., White, C. W., Rudder, R. A., Malta, D. P., Posthill, J. B., and Markunas, R. J., Appl. Phys. Lett. 61, 3124 (1992).Google Scholar
15Narayan, J., Srivatsa, A. R., Petes, M., Yokota, S., and Ravi, K. V., Appl. Phys. Lett. 53, 1823 (1988).CrossRefGoogle Scholar
16Williams, B. E. and Glass, J. T., J. Mater. Res. 4, 373 (1989).Google Scholar
17Jeng, D. G., Tuan, H. S., Salat, R. F., and Fricano, G. J., Appl. Phys. Lett. 20, 1868 (1990).Google Scholar
18Sato, Y., Yashima, I., Fujita, H., Ando, T., and Kamo, M., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST2–C4, Pittsburgh, PA, 1991), p. 371.Google Scholar
19Yang, P. C., Zhu, W., and Glass, J. T., J. Mater. Res. 8, 1773 (1993).CrossRefGoogle Scholar
20Prins, J. F., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST2–C4, Pittsburgh, PA, 1991), p. 386.Google Scholar
21Pickett, W. E., Phys. Rev. B 38, 1316 (1988).Google Scholar
22Haubner, R., Refrac. Metals and Hard Mater. 9, 70 (1990).Google Scholar
23Koizumi, S., Murakami, T., Inuzuka, T., and Suzuki, K., Appl. Phys. Lett. 57, 563 (1990).CrossRefGoogle Scholar
24Yoshikawa, M., Ishida, H., Ishitani, A., Murakami, T., Koizumi, S., and Inuzuka, T., Appl. Phys. Lett. 57, 428 (1990).CrossRefGoogle Scholar
25Yoshikawa, M., Ishida, H., Ishitani, A., Koizumi, S., and Inuzuka, T., Appl. Phys. Lett. 58, 1387 (1991).Google Scholar
26Inuzuka, T., Koizumi, S., and Suzuki, K., Diamond and Related Mater. 1, 175 (1992).CrossRefGoogle Scholar
27Wang, W., Liao, K., and Gao, J., Phys. Status Solidi A 128, K83 (1991).CrossRefGoogle Scholar
28Stoner, B. R. and Glass, J. T., Appl. Phys. Lett. 6, 698 (1992).Google Scholar
29Argoitia, A., Angus, J. C., Wang, L., Ning, X. I., and Pirouz, P., J. Appl. Phys. 73, 4305 (1993).Google Scholar
30Lambrecht, W. R. L. and Segall, B., Phys. Rev. B 40, 9909 (1989); Phys. Rev. B 41, 5409 (1990).CrossRefGoogle Scholar
31Doll, G. L., Sell, J. A., Taylor, C.A. II, and Clarke, R., Phys. Rev. B 43, 6816 (1991).Google Scholar
32Clarke, R., Taylor, C.A. II, Doll, G. L., and Perry, T. A., Diamond and Related Mater. 1, 93 (1992).CrossRefGoogle Scholar
33Kester, D. J., Ailey, K. S., Davis, R. F., and More, K. L., J. Mater. Res. 8, 1213 (1993).CrossRefGoogle Scholar
34Wang, L., Pirouz, P., Argoitia, A., Ma, J. S., and Angus, J. C., Appl. Phys. Lett. 63, 1336 (1993).Google Scholar
35Gheeraert, E., Deneuville, A., Brunei, L., and Oberlin, J. C., in Proc. 2nd Eur. Conf. Diamond, Diamond-Like and Related Coatings, Nice, France, September, 1991, edited by Bachmann, P. K. and Matthews, A. (Elsevier Science, Amsterdam, 1992), p. 504.Google Scholar
36Ma, G-H. M., Lee, Y. H., and Glass, J. T., J. Mater. Res. 5, 2367 (1990).CrossRefGoogle Scholar
37Mishima, O., in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 543.Google Scholar
38Angus, J. C., Argoitia, A., Gat, R., Li, Z., Sunkara, M., Wang, L., and Wang, Y., Philos. Trans. R. Soc. London A 342, 195 (1993).Google Scholar
39Booker, G. R. and Stickler, R., J. Appl. Phys. 33, 3281 (1962).CrossRefGoogle Scholar
40Badzian, A. and Badzian, T., Diamond and Related Mater. 2, 147 (1993).Google Scholar
41Celli, F. G. and Butler, J. E., Ann. Rev. Phys. Chem. 42, 643 (1991).Google Scholar
42Kaxiras, E., Bar-Yam, Y., Joannopoulos, J. D., and Pandey, K. C., Phys. Rev. B 35, 9625 (1987).Google Scholar
43Kaxiras, E., Bar-Yam, Y., Joannopoulos, J. D., and Pandey, K. C., Phys. Rev. B 35, 9636 (1987).CrossRefGoogle Scholar
44Jones, R. O. and Gunnarsson, O., Rev. Modern. Phys. 61, 689 (1989).CrossRefGoogle Scholar
45Brafman, O., Lengyel, G., and Mitra, S. S., Solid State Commun. 6, 523 (1968).Google Scholar
46Zhu, W., Wang, X. H., Stoner, B. R., Ma, G. H. M., Kong, H. S., Braun, M. W. H., and Glass, J. T., Phys. Rev. B 47, 6529 (1993).Google Scholar
47Shechtman, D., Hutchison, J. L., Robins, L. H., Farabaugh, E. N., and Feldman, A., J. Mater. Res. 8, 473 (1993).CrossRefGoogle Scholar
48Stoner, B. R., Ma, G. H. M., Wolter, S. D., and Glass, J. T., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
49Suzuki, K., Ichihara, M., Takeuchi, S., Ohtake, N., Yoshikama, M., Hirabayashi, K., and Kurihara, N., Philos. Mag. A 65, 657 (1992).CrossRefGoogle Scholar
50Angus, J. C., Hoffman, R. W., and Schmidt, P. H., in Proc. First Int. Conf., New Diamond Science and Technology, edited by Saito, S., Fukunaga, O., and Yoshikawa, M. (KTK Sci. Press, Tokyo, Japan, 1991), p. 9.Google Scholar
51Hirsch, P. B., Howrie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J., Electron Microscopy of Thin Crystals (Butterworths, London, 1967).Google Scholar
52Hornstra, J., J. Phys. Chem. Solids 5, 129 (1958).Google Scholar
53Matsumoto, S. and Matsui, Y., J. Mater. Sci. 18, 1785 (1983).Google Scholar
54Lambrecht, W. R. L. and Segall, B., J. Mater. Res. 7, 696 (1992).Google Scholar
55Bourret, A. and Bacmann, J. J., in Proc. JIMIS-4, Trans. Japan Inst. Metals, Suppl. 125 (1986).Google Scholar
56Vaudin, M. D., Cunningham, B., and Ast, D. G., Scripta Metall. 17, 191 (1983).Google Scholar
57Vlachavas, D. and Pond, R. C., Inst. Phys. Conf. Ser. No. 60, 159 (1981).Google Scholar
58Papon, A. M. and Petit, M., Scripta Metall. 19, 391 (1985).CrossRefGoogle Scholar
59Bourret, A., Billard, L., and Petit, M., Inst. Phys. Conf. Ser. No. 76, 23 (1985).Google Scholar
60Mauger, A., Bourgoin, J. C., Allan, G., Lannoo, M., Bourret, A., and Billard, L., Phys. Rev. B 35, 1267 (1987).CrossRefGoogle Scholar
61Pirouz, P. and Yang, J., in High Resolution Electron Microscopy of Defects in Materials, edited by Sinclair, R., Smith, D. J., and Dahmen, U. (Mater. Res. Soc. Symp. Proc. 183, Pittsburgh, PA, 1990), p. 173.Google Scholar
62Paxton, A. T. and Sutton, A. P., Acta Metall. 37, 1693 (1989).CrossRefGoogle Scholar