Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-11T18:51:47.623Z Has data issue: false hasContentIssue false

Growth, structure, and microhardness of epitaxial TiN/NbN superlattices

Published online by Cambridge University Press:  31 January 2011

M. Shinn
Affiliation:
Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
L. Hultman*
Affiliation:
Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
S.A. Barnett
Affiliation:
Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
*
a)Permanent address: Department of Physics, Thin Film Division, Linköping University, S-58183 Linköping, Sweden.
Get access

Abstract

Epitaxial TiN/NbN superlattices with wavelengths/ranging from 1.6 to 450 nm have been grown by reactive magnetron sputtering on MgO(100). Cross-sectional transmission electron microscopy (XTEM) studies showed well-defined superlattice layers. Voided low-angle boundaries, aligned perpendicular to the film plane, were also present. High-resolution images showed misfit dislocations for Λ = 9.4 nm, but not Λ = 4.6 nm. Up to ninth-order superlattice reflections were observed in diffraction, indicating that the interfaces were relatively sharp. Analysis of the first-order x-ray superlattice reflection intensities indicated that the composition modulation amplitude increased and the coherency strains decreased for Λ increased from 2 to 10 nm. Vickers microhardness H was found to increase rapidly with increasing Λ, from 1700 kg/mm2 for a TiN–NbN alloy (i.e., Λ = 0) to a maximum of 4900 kg/mm2 at Λ = 4.6 nm. H decreased gradually for further increases in Λ above 4.6 nm, to H = 2500 kg/mm2 at Λ = 450 nm. The hardness results are compared with theories for strengthening of multilayers.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Henning, C.A.O., Boswell, F.W., and Corbett, J.M., Acta Metall. 23, 193 (1975).CrossRefGoogle Scholar
2.Bunshah, R.F., Nimmagadda, R., Doerr, H. J., Movchan, B.A., Grechanuk, N.I., and Dabizha, E.V., Thin Solid Films 72, 261 (1980).CrossRefGoogle Scholar
3.Palatnik, L. S., Ilinskii, A. I., and Sapelkin, N. P., Sov. Phys. Solid State 8, 2016 (1967).Google Scholar
4.Lehoczky, S. L., J. Appl. M Phys. 49, 5479 (1978).CrossRefGoogle Scholar
5.Lehoczky, S.L., Phys. Rev. Lett. 41, 1814 (1978).CrossRefGoogle Scholar
6.Movchan, B.A., Demchishin, A.V., Badilenko, G.F., Bunshah, R.F., Sans, C., Deshpandey, C., and Doerr, H.J., Thin Solid Films 97, 215 (1982).CrossRefGoogle Scholar
7.Springer, R. W. and Catlett, D. C., Thin Solid Films 54, 197 (1970).CrossRefGoogle Scholar
8.Springer, R.W. and Hosford, C D., Vac, J.. Sci. Technol. 20M, 462 (1982).Google Scholar
9.Bunshah, R.F., Deshpandey, C., Doerr, H.J., Movchan, B.A., Demchishin, A.V., and Badilenko, G. F., Thin Solid Films 96, 59 (1982).CrossRefGoogle Scholar
10.Springer, R.W., Ott, N.L., and Catlett, D.S., Vac, J.. Sci. Technol. 16, 877 (1979).Google Scholar
11.Dieter, G., Mechanical Metallurgy (McGraw-;Hill, New York, 1986).Google Scholar
12.Menezes, S. and Anderson, D. P., J. Electrochem. Soc. 137,, 440 (1990).CrossRefGoogle Scholar
13.Helmersson, U., Todorova, S., Barnett, S.A., Sundgren, J-E., Markert, L.C., and Greene, J.E., J. Appl. Phys. 62, 481 (1987).CrossRefGoogle Scholar
14.Mirkarimi, P. B., Hultman, L., and Barnett, S. A., Appl. Phys. Lett. 57, 2654 (1990).CrossRefGoogle Scholar
15.Cammarata, R. C., Schlesinger, T. E., Kim, C., Qadri, S. B., and Edelstein, A. S., Appl. Phys. Lett. 56, 1862 (1990).CrossRefGoogle Scholar
16.Koehler, J.C., Phys. Rev. B 2, 547 (1970).CrossRefGoogle Scholar
17.Cahn, J.W., Acta Metall. 11, 1274 (1963).CrossRefGoogle Scholar
18.Mirkarimi, P.B., Shinn, M., and Barnett, S.A., J. Vac. Sci. Technol. in press).Google Scholar
19.McWhan, D. B., in Synthetic Modulated Structures, edited by Chang, L. L. and Giessen, B.C. (Academic Press, New York, 1985), Chap. 2.Google Scholar
20.Eltouhky, A. H. and Greene, J. E., J. Appl. Phys. 50, 505 (1979).CrossRefGoogle Scholar
21.Snyder, C.W., Orr, B.G., Kessler, D., and Sander, L.M., Phys. Rev. Lett. 66, 3032 (1991).CrossRefGoogle Scholar
22.Stowell, M.J., in Epitaxial Growth, Part B, edited by Matthews, J.W. (Academic Press, New York, 1975), Chap. 5.Google Scholar
23.Hultman, L., Wallenberg, L.R., Shinn, M., and Barnett, S.A., J. Vac. Sci. Technol. (in press).Google Scholar
24.Hultman, L., Hesse, D., and Chiou, W-A., J. Mater. Res. 6, 1744 (1991).CrossRefGoogle Scholar
25.Cook, H. E., Phys, J.. Chem. Solids 30, 1097 (1969).CrossRefGoogle Scholar
26.Fleming, R.M., McWhan, D. B., Gossard, A. C., Wiegmann, W., and Logan, R.A., J. Appl. Phys. 51, 357 (1980).CrossRefGoogle Scholar
27.Jalochowski, M. and Mikolajczak, P., J. Phys. F 13, 1973 (1983).CrossRefGoogle Scholar
28.Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974).Google Scholar
29.Mirkarimi, P.B., Shinn, M., Kumar, S., Grimsditch, M., and Barnett, S.A., J. Appl. Phys. (in press).Google Scholar
30.Pelleg, J., Thin Solid Films 197, 117 (1991).CrossRefGoogle Scholar
31.Jiang, X., J. Appl. Phys. 69, 3053 (1991).CrossRefGoogle Scholar
32.Tabor, D., J. Inst. Metals 79, 1 (1951).Google Scholar
33.Toth, L. E., Transition Metal Nitrides and Carbides (Academic Press, New York, 1971).Google Scholar