Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T11:17:59.395Z Has data issue: false hasContentIssue false

The growth of hematite nanobelts and nanowires—tune the shape via oxygen gas pressure

Published online by Cambridge University Press:  21 February 2012

Lu Yuan
Affiliation:
Department of Mechanical Engineering and Multidisciplinary Program in Materials Science and Engineering, State University of New York, Binghamton, New York 13902
Qike Jiang
Affiliation:
School of Physics, Center for Electron Microscopy and Ministry of Education Key Laboratory of Artificial Micro- and Nano-Structures, Wuhan University, Wuhan 430072, China
Jianbo Wang
Affiliation:
School of Physics, Center for Electron Microscopy and Ministry of Education Key Laboratory of Artificial Micro- and Nano-Structures, Wuhan University, Wuhan 430072, China
Guangwen Zhou*
Affiliation:
Department of Mechanical Engineering and Multidisciplinary Program in Materials Science and Engineering, State University of New York, Binghamton, New York 13902
*
a)Address all correspondence to this author. e-mail: gzhou@binghamton.edu
Get access

Abstract

Using the thermal oxidation of iron, we show that the growth morphologies of one-dimensional nanostructures of hematite (α-Fe2O3) can be tuned by varying the oxygen gas pressure. It is found that the oxidation at the oxygen gas pressures of ∼0.1 Torr is dominated by the growth of hematite nanobelts, whereas oxidation at pressure near 200 Torr is dominated by the growth of hematite nanowires. Detailed transmission electron microscopy study shows that both the nanobelts and nanowires grow along the direction with a bicrystal structure. It is shown that nanowires are rooted on Fe2O3 grains, whereas nanobelts are originated from the boundaries of Fe2O3 grains. Our results show that oxygen gas pressure can be used to manipulate the Fe2O3/Fe3O4 interfacial reaction, thereby tailoring the oxide growth morphologies via the stress-driven diffusion.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dick, K.A.: A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III-V nanowires. Prog. Cryst. Growth Charact. Mater. 54, 138 (2008).CrossRefGoogle Scholar
2.Lu, J., Chang, P., and Fan, Z.: Quasi-one-dimensional metal oxide materials-synthesis, properties and applications. Mater. Sci. Eng., R 52, 49 (2006).CrossRefGoogle Scholar
3.Comini, E., Baratto, C., Faglia, G., Ferroni, M., Vomiero, A., and Sberveglieri, G.: Quasi-one-dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Prog. Mater Sci. 54, 1 (2009).CrossRefGoogle Scholar
4.Park, E., Shim, S., Ha, R., Oh, E., Lee, B.W., and Choi, H.J.: Reassembling of Ni and Pt catalyst in the vapor-liquid-solid growth of GaN nanowires. Mater. Lett. 65, 2458 (2011).CrossRefGoogle Scholar
5.Paek, J., Yamaguchi, M., and Amano, H.: MBE-VLS growth of catalyst-free III-V axial heterostructure nanowires on (111)Si substrates. J. Cryst. Growth 323, 315 (2011).CrossRefGoogle Scholar
6.Schwertberger, R., Gold, D., Reithmaier, J.P., and Forchel, A.: Epitaxial growth of 1.55 μm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wave length laser applications. J. Cryst. Growth 251, 248 (2003).CrossRefGoogle Scholar
7.Gatel, C., Tang, H., Crestou, C., Ponchet, A., Bertru, N., Dore, F., and Folliot, H.: Analysis by high-resolution electron microscopy of elastic strain in thick InAs layers embedded in Ga0.47In0.53As buffers on InP(001) substrate. Acta Mater. 58, 3238 (2010).CrossRefGoogle Scholar
8.Zhang, Z.H., Sumitomo, K., Lin, F., Omi, H., and Ogino, T.: Structure transition of Ge/Si(113) surfaces during Ge epitaxial growth. Physica E 24, 157 (2004).CrossRefGoogle Scholar
9.Motta, N., Sgarlata, A., Calarco, R., Nguyen, Q., Cal, J.C., Patella, F., Balzarotti, A., and De Crescenzi, M.: Growth of Ge-Si(111) epitaxial layers: Intermixing, strain relaxation and island formation. Surf. Sci. 406, 254 (1998).CrossRefGoogle Scholar
10.Fan, H.J., Barnard, A.S., and Zacharias, M.: ZnO nanowires and nanobelts: Shape selection and thermodynamic modeling. Appl. Phys. Lett. 90, 143116 (2007).CrossRefGoogle Scholar
11.Barnard, A.S.: A thermodynamic model for the shape and stability of twinned nanostructures. J. Phys. Chem. B 110, 24498 (2006).CrossRefGoogle ScholarPubMed
12.Barnard, A.S., Xiao, Y., and Cai, Z.: Modelling the shape and orientation of ZnO nanobelts. Chem. Phys. Lett. 419, 313 (2006).CrossRefGoogle Scholar
13.Jiang, X.C., Herricks, T., and Xia, Y.N.: CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2, 1333 (2002).CrossRefGoogle Scholar
14.Zhong, M.L., Zeng, D.C., Liu, Z.W., Yu, H.Y., Zhong, X.C., and Qiu, W.Q.: Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Mater. 58, 5926 (2010).CrossRefGoogle Scholar
15.Xu, C.H., Woo, C.H., and Shi, S.Q.: Formation of CuO nanowires on Cu foil. Chem. Phys. Lett. 399, 62 (2004).CrossRefGoogle Scholar
16.Rizzo, F., Saunders, S.R.J., and Monteiro, M.: The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review. Prog. Mater Sci. 53, 775 (2008).Google Scholar
17.Chueh, Y.L., Lai, M.W., Liang, J.Q., Chou, L.J., and Wang, Z.L.: Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor-solid process. Adv. Funct. Mater. 16, 2243 (2006).CrossRefGoogle Scholar
18.Nakamura, R., Matsubayashi, G., Tsuchiya, H., Fujimoto, S., and Nakajima, H.: Formation of oxide nanotubes via oxidation of Fe, Cu and Ni nanowires and their structural stability: Difference in formation and shrinkage behavior of interior pores. Acta Mater. 57, 5046 (2009).CrossRefGoogle Scholar
19.Takagi, R.: Growth of oxide whiskers on metals at high temperature. J. Phys. Soc. Jpn. 12, 1212 (1957).CrossRefGoogle Scholar
20.Wen, X.G., Wang, S.H., Ding, Y., Wang, Z.L., and Yang, S.H.: Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J. Phys. Chem. B 109, 215 (2005).CrossRefGoogle ScholarPubMed
21.Voss, D.A., Butler, E.P., and Michell, T.E.: The growth of hematite blades during the high temperature oxidation of iron. Metall. Trans. A 13A, 929 (1982).CrossRefGoogle Scholar
22.Han, Q., Xu, Y.Y., Fu, Y.Y., Zhang, H., Wang, R.M., Wang, T.M., and Chen, Z.Y.: Defects and growing mechanisms of α-Fe2O3 nanowires. Chem. Phys. Lett. 431, 100 (2006).CrossRefGoogle Scholar
23.Dong, Z., Kashkarov, P., and Zhang, H.: Monte Carlo study for the growth of α-Fe2O3 nanowires synthesized by thermal oxidation of iron. Nanoscale 2, 524 (2010).CrossRefGoogle Scholar
24.Hsieh, C.T., Chen, J.M., Lin, H.H., and Shih, H.C.: Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechansim. Appl. Phys. Lett. 82, 3316 (2003).CrossRefGoogle Scholar
25.Huang, L.S., Yang, S.G., Li, T., Gu, B.X., Du, Y.W., Lu, Y.N., and Shi, S.Z.: Preparation of large-scale cupric oxide nanowires by thermal evaporation method. J. Cryst. Growth 260, 130 (2004).CrossRefGoogle Scholar
26.Rapp, R.A.: The high temperature oxidation of metals forming cation-diffusing scales. Metall. Mater. Trans. B 15, 195 (1984).CrossRefGoogle Scholar
27.Raynaud, G. and Rapp, R.: In situ observation of whiskers, pyramids and pits during the high-temperature oxidation of metals. Oxid. Met. 21, 89 (1984).CrossRefGoogle Scholar
28.Kofstad, P.: High Temperature Corrosion (Elsevier Applied Science Publishers, Barking, UK, 1988, pp. 350445).Google Scholar
29.Goncalves, A.M., Campos, L.C., Ferlauto, A.S., and Lacerda, R.G.: On the growth and electrical characterization of CuO nanowires by thermal oxidation. J. Appl. Phys. 106, 034303 (2009).CrossRefGoogle Scholar
30.Kumar, A., Srivastava, A.K., Tiwari, P., and Nandedkar, R.V.: The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J. Phys. Condens. Matter 16, 8531 (2004).CrossRefGoogle Scholar
31.Chen, J.T., Zhang, F., Wang, J., Zhang, G.A., Miao, B.B., Fan, X.Y., Yan, D., and Yan, P.X.: CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd. 454, 268 (2008).CrossRefGoogle Scholar
32.Chen, J., Xu, L., Li, W., and Gou, X.: α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 17, 582 (2005).CrossRefGoogle Scholar
33.Wu, C., Yin, P., OuYang, C., and Xie, Y.: Synthesis of hematite (α-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B 110, 17806 (2006).CrossRefGoogle ScholarPubMed
34.Xu, Y.Y., Rui, X.F., Fu, Y.Y., and Zhang, H.: Magnetic properties of α-Fe2O3 nanowires. Chem. Phys. Lett. 410, 36 (2005).CrossRefGoogle Scholar
35.Hsu, L.-C., Li, Y.-Y., Lo, C.-G., Huang, C.-W., and Chern, G.: Thermal growth and magnetic characterization of α-Fe2O3 nanowires. J. Phys. D Appl. Phys. 41, 185003 (2008).CrossRefGoogle Scholar
36.Suber, L., Imperatori, P., Ausanio, G., Fabbri, F., and Hofmeister, H.: Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes. J. Phys. Chem. B 109, 7103 (2005).CrossRefGoogle ScholarPubMed
37.Hsu, L.-C., Li, Y.-Y., and Hsiao, C.-Y.: Synthesis, electrical measurement, and field emission properties of α-Fe2O3 nanowires. Nanoscale Res. Lett. 3, 330 (2008).CrossRefGoogle Scholar
38.Peng, Y., Zhang, H.L., Pan, S.L., and Li, H.L.: Magnetic properties and magnetization reversal of α-Fe nanowires deposited in alumina film. J. Appl. Phys. 87, 7405 (2000).CrossRefGoogle Scholar
39.Wang, H., Zhang, X., Liu, B., Zhao, H., Li, Y., Huang, Y., and Du, Z.: Synthesis and characterization of single crystal α-Fe2O3 nanobelts. Chem. Lett. 34, 184 (2005).CrossRefGoogle Scholar
40.Zhong, L.S., Hu, J.S., Liang, H.P., Cao, A.M., Song, W.G., and Wan, L.J.: Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 18, 2426 (2006).CrossRefGoogle Scholar
41.Jin, J., Ohkoshi, S., and Hashimoto, K.: Giant coercive field of nanometer‐sized iron oxide. Adv. Mater. 16, 48 (2004).CrossRefGoogle Scholar
42.Wu, J.J., Lee, Y.L., Chiang, H.H., and Wong, D.K.: Growth and magnetic properties of oriented α-Fe2O3 nanorods. J. Phys. Chem. B 110, 18108 (2006).CrossRefGoogle ScholarPubMed
43.Cvelbar, U., Chen, Z.Q., Sunkara, M.K., and Mozetic, M.: Spontaneous growth of superstructure α-Fe2O3 nanowire and nanobelt arrays in reactive oxygen plasma. Small 4, 1610 (2008).CrossRefGoogle ScholarPubMed
44.Fu, Y.Y., Chen, J., and Zhang, J.: Synthesis of Fe2O3 nanowires by oxidation of iron. Chem. Phys. Lett. 350, 491 (2001).CrossRefGoogle Scholar
45.Fu, Y.Y., Wang, R.M., Xu, J., Chen, J., Yan, Y., Narlikar, A.V., and Zhang, H.: Synthesis of large arrays of aligned α-Fe2O3 nanowires. Chem. Phys. Lett. 379, 373 (2003).CrossRefGoogle Scholar
46.Nasibulin, A.G., Rackauskas, S., Jiang, H., Tian, Y., Mudimela, P.R., Shandakov, S.D., Nasibulina, L.I., Sainio, J., and Kauppinen, E.I.: Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2, 373 (2009).CrossRefGoogle Scholar
47.Chen, Z.Q., Cvelbar, U., Mozetic, M., He, J.Q., and Sunkara, M.K.: Long-range ordering of oxygen-vacancy planes in α-Fe2O3 nanowires and nanobelts. Chem. Mater. 20, 3224 (2008).CrossRefGoogle Scholar
48.Wang, R.M., Chen, Y.F., Fu, Y.Y., Zhang, H., and Kisielowski, C.: Bicrystalline hematite nanowires. J. Phys. Chem. B 109, 12245 (2005).CrossRefGoogle ScholarPubMed
49.Birks, N., Meier, G.H., and Pettit, F.S.: Introduction to the High Temperature Oxidation of Metals, 2nd ed. (Cambridge University Press, Cambridge, United Kingdom, 2006, pp. 8386).CrossRefGoogle Scholar
50.Young, D.: High Temperature Oxidation and Corrosion of Metals (Elsevier, Oxford, United Kingdom, 2008, pp. 8591).Google Scholar
51.Yuan, L., Wang, Y.Q., Mema, R., and Zhou, G.W.: Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater. 59, 2491 (2011).CrossRefGoogle Scholar
52.Mema, R., Yuan, L., Du, Q., Wang, Y.Q., and Zhou, G.W.: Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem. Phys. Lett. 512, 87 (2011).CrossRefGoogle Scholar