Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-01T15:44:56.016Z Has data issue: false hasContentIssue false

Growth of diamond films and characterization by Raman, scanning electron microscopy, and x-ray photoelectron spectroscopy

Published online by Cambridge University Press:  31 January 2011

S. C. Sharma*
Affiliation:
Center for Positron Studies, Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019
M. Green
Affiliation:
Center for Positron Studies, Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019
R. C. Hyer
Affiliation:
Center for Positron Studies, Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019
C. A. Dark
Affiliation:
Center for Positron Studies, Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019
T. D. Black
Affiliation:
Center for Positron Studies, Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019
A. R. Chourasia
Affiliation:
Department of Physics, East Texas State University, Commerce, Texas 75428
D. R. Chopra
Affiliation:
Department of Physics, East Texas State University, Commerce, Texas 75428
K. K. Mishra
Affiliation:
Department of Chemistry, The University of Texas at Arlington, Arlington, Texas 76019
*
a)Address correspondence to this author.
Get access

Abstract

We have deposited diamond films on Si〈111〉 using hot filament assisted chemical vapor deposition at low pressures ∼25 Torr. Diamond films deposited at different relative concentrations of methane (ranging from 0.25% to 2.0%) in methane-hydrogen mixtures have been characterized by Raman spectroscopy, scanning electron microscopy, and x-ray photoelectron spectroscopy. With varying methane concentration, Raman spectra show features characteristic of crystalline diamond, diamond-like carbon, and polycrystalline graphite. Scanning electron micrographs show densely packed diamond crystallites. SEM measurements made on diamond films grown as a function of time show that the median grain size of the diamond crystallites increases linearly with time during the initial phase of the growth. X-ray photoelectron spectroscopy reveals differences between the diamond sp3 covalent bonding and sp2 graphitic bonding as well as the extent of s-p hybridization as a function of methane concentration. The plasmon loss shoulder, characteristic of graphite, is absent from the spectrum of 0.25% methane concentration film. But it appears in the XPS spectra of films grown at higher concentrations.

Type
Diamond and Diamond-Like Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Angus, C., Koidl, P., and Donity, S., in Plasma Deposited Thin Films, edited by Mort, J. and Jansen, F. (CRC Press, Boca Raton, FL, 1986), p. 89.Google Scholar
2Kasi, S., Kang, H., and Rabalais, J.W., Phys. Rev. Lett. 59, 75 (1987).CrossRefGoogle Scholar
3Chu, H. and Bogy, D. B., J. Vac. Sci. Technol. A 5, 3287 (1987).Google Scholar
4DeVries, R.C., Ann. Rev. Mater. Sci. 17, 161 (1987).CrossRefGoogle Scholar
5Badzian, A.R. and DeVries, R.C., Mater. Res. Bull. XXIII, 385 (1988).CrossRefGoogle Scholar
6Badzian, A. R., Badzian, T., Roy, R., Messier, R., and Spear, K. E., Mater. Res. Bull. XXIII, 531 (1988).CrossRefGoogle Scholar
7Yarbrough, W. A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
8Okano, K., Naruki, H., Akiba, Y., Kurosu, T., Ida, M., and Hirose, Y., Jpn. J. Appl. Phys. 27, L173 (1988).CrossRefGoogle Scholar
9Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
10Bubenzer, A., Diechler, B., Brandt, G., and Koidl, P., J. Appl. Phys. 54, 4590 (1983).CrossRefGoogle Scholar
11Richter, A., Scheibe, H. J., Pompe, W., Brzezinka, K.W., and Muhling, I., J. Non-Cryst. Solids 88, 131 (1986).CrossRefGoogle Scholar
12Wagal, S.S., Juengerman, E.M., and Collins, C.B., Appl. Phys. Lett. 53, 187 (1988).CrossRefGoogle Scholar
13Sharma, S.C., Hyer, R.C., Dark, C. A., Green, M., Black, T.D., Chourasia, A. R., and Chopra, D. R., in Extended Abstracts No. 19, Technology Update on Diamond Films, edited by Chang, R. P. H., Nelson, D., and Hiraki, A. (Materials Research Society, Pittsburgh, PA, 1989), p. 71.Google Scholar
14Sharma, S.C., Dark, C. A., Hyer, R.C., Green, M., Black, T.D., Chourasia, A. R., Chopra, D. R., and Mishra, K. K., Appl. Phys. Lett. 56, 1781 (1990).CrossRefGoogle Scholar
15Chourasia, A.R., Chopra, D.R., Sharma, S.C., Green, M., Hyer, R.C., and Dark, C. A., Thin Solid Films (in press).Google Scholar
16Nemanich, R.J., Glass, J.T., Lucovsky, G., and Shroder, R.E., J. Vac. Sci. Technol. A 6, 1783 (1988).CrossRefGoogle Scholar
17Shroder, R. E., Nemanich, R. J., and Glass, J.T., Phys. Rev. B 41, 3738 (1990).CrossRefGoogle Scholar
18Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
19Buckley, R. G., Moustakas, T. D., Ye, L., and Varon, J., J. Appl. Phys. 66, 3595 (1989).CrossRefGoogle Scholar
20LeGrice, Y.M., Nemanich, R.J., Glass, J.T., Lee, Y.H., Rudder, R.A., and Markunas, R. J., in Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J.T., Messier, R. F., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990).Google Scholar
21Gonzales-Hernandez, J., Azarbayajani, G. H., Tsu, R., and Poliak, F. H., Appl. Phys. Lett. 47, 1350 (1985).CrossRefGoogle Scholar
22Wada, N. and Solin, S.A., Physica B 105, 353 (1981).Google Scholar
23Hyer, R. C., Green, M., Mishra, K. K., and Sharma, S. C., J. Mater. Sci. Lett, (in press).Google Scholar
24Chauhan, S. P., Angus, J. C., and Gardner, N. C., J. Appl. Phys. 47, 4746 (1976).CrossRefGoogle Scholar
25McFeely, F.R., Kowalczyk, S.P., Ley, L., Cavell, R.G., Poliak, R.A., and Shirley, D. A., Phys. Rev. B 9, 5268 (1974).CrossRefGoogle Scholar
26Kasi, S.R., Kang, H., and Rabalais, J.W., J. Chem. Phys. 88, 5914 (1988).CrossRefGoogle Scholar
27Mizokawa, Y., Miyasato, T., Nakamura, S., Geib, K. M., and Wilmsen, C.W., J. Vac. Sci. Technol. A 5, 2809 (1980).CrossRefGoogle Scholar
28Cavell, R.G., Kowalczyk, S.P., Ley, L., Poliak, R.A., Mills, B., Shirley, D. A., and Perry, W., Phys. Rev. B 7, 5313 (1973).CrossRefGoogle Scholar