Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T04:20:42.424Z Has data issue: false hasContentIssue false

Growth and characterization of gallium nitride nanowires produced on different sol-gel derived catalyst dispersed in titania and polyvinyl alcohol matrix

Published online by Cambridge University Press:  03 March 2011

A. Chatterjee
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei-106, Taiwan
S. Chattopadhyay*
Affiliation:
Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei-106, Taiwan
C.W. Hsu
Affiliation:
Department of Chemistry, National Taiwan Normal University, Taipei-116, Taiwan
C.H. Shen
Affiliation:
Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei-106, Taiwan
L.C. Chen
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei-106, Taiwan
C.C. Chen
Affiliation:
Department of Chemistry, National Taiwan Normal University, Taipei-116, Taiwan
K.H. Chen
Affiliation:
Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei-106, Taiwan
H.Y. Lee
Affiliation:
Research Division, Synchrotron Radiation Research Center, Hsinchu, Taiwan
*
a) Address all correspondence to this author. e-mail: sur@diamond.iams.sinica.edu.tw
Get access

Abstract

Sol-gel derived catalyst systems of cobalt, nickel, and iron were used in the growth of gallium nitride (GaN) nanowires by thermal chemical vapor deposition. A diffusion barrier matrix of titania (TiO2) has been used in which the catalysts were dispersed to have control of the catalyst particle sizes and hence on the size and morphology of the GaN nanowires. This single-step and cost-effective processing of the catalyst bed produced good-quality GaN naowires with comparable structural and optical properties with those previously reported. In a particular case, a stress-induced cubic admixture to the otherwise hexagonal structural symmetry was observed. The samples were characterized by high-resolution scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and cathodo-luminescence studies.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lei, T., Moustakas, T.D., Graham, R.J., He, Y. and Berkowitz, S.J.: Epitaxial growth and characterization of zinc-blende gallium nitride on (001) silicon. J. Appl. Phys. 71, 4933 (1992).CrossRefGoogle Scholar
2Zhou, H., Rupp, T., Phillipp, F., Henn, G., Gross, M., Ruhm, A. and Schroeder, H.: Growth and microstructural characterization of GaN films grown by laser induced reactive epitaxy. J. Appl. Phys. 93, 1933 (2003).CrossRefGoogle Scholar
3Tabata, A., Enderlein, R., Leite, J.R., Silva, S.W. da, Galzerani, J.C., Schikora, D., Kloidt, M. and Lischka, K.: Comparative Raman studies of cubic and hexagonal GaN epitaxial layers. J. Appl. Phys. 79, 4137 (1996).CrossRefGoogle Scholar
4Stirite, S., Ruan, J., Li, Z., Manning, N., Salvador, A., Chen, H., Smith, D.J., Choyke, W.J. and Morkoc, H.: An investigation of the properties of cubic GaN grown on GaAs by plasma assisted molecular beam epitaxy. J. Vac. Sci. Technol. B 9 1924 (1991).CrossRefGoogle Scholar
5Nakamura, S.: GaN growth using GaN buffer layer. Jap. J. Appl. Phys. 30 L1705 (1991).Google Scholar
6Lee, I.H., Park, S.M. and Bull, X.: Deposition of cubic GaN films by reactive laser ablation of liquid gallium target in ammonia. Korean Chem. Soc. 21, 1065 (2000).Google Scholar
7Argoitia, A., Hayman, C.C., Angus, J.C., Wang, L., Dyck, J.S. and Kash, K.: Low pressure synthesis of bulk polycrystalline GaN. Appl. Phys. Lett. 70, 179 (1997).Google Scholar
8Joshkin, V.A., Roberts, J.C., Mcintosh, F.G., Bedair, S.M., Piner, E.L. and Behbehani, M.K.: Optical memory effect in GaN epitaxial films. Appl. Phys. Lett. 71, 234 (1997).CrossRefGoogle Scholar
9Han, W., Fan, S., Li, Q. and Hu, Y.: Synthesis of gallium nitride nanorods through a carbon nanotube confined reaction. Science 277, 1287 (1997).CrossRefGoogle Scholar
10Morales, A.M. and Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).CrossRefGoogle ScholarPubMed
11Xie, Y., Quian, Y., Wang, W., Zhang, S. and Zhang, Y.: A benzene thermal synthetic route to nanocrystalline GaN. Science 272, 1926 (1996).CrossRefGoogle ScholarPubMed
12Hu, C.W., Bell, A., Ponce, F.A., Smith, D.J. and Tsong, I.S.T.: Growth of self assembled quantum dots via the vapor-liquid-solid mechanism. Appl. Phys. Lett. 81, 3236 (2002).CrossRefGoogle Scholar
13Kim, H.M., Kim, D.S., Kim, D.Y., Kang, T.W., Cho, Y.H. and Chung, K.S.: Growth and characterization of single-crystal GaN nanorods by hydride vapor phase epitaxy. Appl. Phys. Lett. 81, 2193 (2002).CrossRefGoogle Scholar
14Han, W.Q. and Zettl, A.: Pyrolysis approach to the synthesis of gallium nitride nanorods. Appl. Phys. Lett. 80, 303 (2002).CrossRefGoogle Scholar
15Chen, C.C., Yeh, C.C., Chen, C.H., Yu, M.Y., Liu, H.L., Wu, J.J., Chen, K.H., Chen, L.C., Peng, J.Y. and Chen, Y.F.: Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc. 123, 2791 (2001).CrossRefGoogle ScholarPubMed
16Duan, X.F. and Lieber, C.M.: Laser assisted catalytic growth of single crystal single crystal GaN nanowires. J. Am. Chem. Soc. 122, 188 (2000).Google Scholar
17Tang, C.C., Fan, S.S., Dang, H.Y., Li, P. and Liu, Y.M.: Simple and high yield method for synthesizing single crystal GaN nanowires. Appl. Phys. Lett. 77, 1961 (2000).CrossRefGoogle Scholar
18Johnson, J., Choi, H.J., Knutsen, K.P., Schaller, R.D., Yang, P. and Saykally, R.J.: Single gallium nitride nanowire lasers. Nature Materials 1, 106 (2002).CrossRefGoogle ScholarPubMed
19Liang, C.H., Chen, L.C., Huang, J.S., Chen, K.H., Hung, Y.T. and Chen, Y.F.: Selective-area growth of indium nitride nanowires on gold-patterned Si(100) substrates. Appl. Phys. Lett. 81, 22 (2002).Google Scholar
20Chen, L.C., Chen, K.H., Chen, C.C.: Nanobelts in Nanowires Materials Properties and Devices , edited by Wang, Z.L. (Kluwer Academic Publisher, New York, 2003)Google Scholar
21Lagerstedt, O. and Monemar, B.: Variation of lattice parameters in GaN with stoichiometry and doping. Phys. Rev. B 19, 3064 (1979).Google Scholar
22Wang, L.D. and Kwok, H.S.: Cubic aluminum nitride and gallium nitride thin films prepared by pulsed laser deposition. Appl. Surf. Sci. 154–155, 439 (2000).CrossRefGoogle Scholar
23Okumura, H., Misawa, S. and Yoshida, S.: Epitaxial growth of cubic and hexagonal GaN on GaAs by gas-source molecular-beam epitaxy. Appl. Phys. Lett. 59, 1058 (1991).CrossRefGoogle Scholar
24Ilegems, A.S. Barker Jr.and M.: Infrared Lattice Vibrations and Free-Electron Dispersion in GaN. Phys. Rev. B 7 743 (1973).Google Scholar
25Giehler, M., Ramsteiner, M., Brandt, O., Yang, H. and Ploog, K.H.: Optical phonons of hexagonal and cubic GaN studied by infrared transmission and Raman spectroscopy. Appl. Phys. Lett. 67, 733 (1995).CrossRefGoogle Scholar
26Miwa, K. and Fukumoto, A.: First-principles calculation of the structural, electronic, and vibrational properties of gallium nitride and aluminum nitride. Phys. Rev. B 48 7897 (1993).CrossRefGoogle ScholarPubMed
27Seo, H.W., Bae, S.Y., Park, J., Yang, H., Park, K.S. and Kim, S.: Strained gallium nitride nanowires. J. Chem. Phys. 116, 9492 (2002).Google Scholar
28Liu, H.L., Chen, C.C., Chia, C.T., Yeh, C.C., Chen, C.H., Yu, M.Y., Keller, S. and DenBaars, S.P.: Infrared and Raman-scattering studies in single-crystalline GaN nanowires. Chem. Phys. Lett. 345, 245 (2001).Google Scholar
29Perlin, P., Suski, T., Teiseyre, H., Leszcynsky, M., Grzegory, L., Jun, J., Porowski, S., Bouguslowski, P., Bemhole, J., Chervin, J.C., Polian, A. and Moustakas, T.D.: Towards the Identification of the Dominant Donor in GaN. Phys. Rev. Lett. 75, 296 (1995).CrossRefGoogle Scholar
30Monemar, B.: Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev. B 10, 676 (1974).CrossRefGoogle Scholar
31Menninger, J., Jahn, U., Brandt, O., Yang, H. and Ploog, K.: Optical transitions in cubic GaN investigated by spatially resolved cathodoluminescence. Appl. Phys. Lett. 69, 836 (1996).Google Scholar
32Alves, H., Bohm, M., Hofstaetter, A., Amano, H., Einfeldt, S., Hommel, D., Hofmann, D.M. and Meyer, B.K.: Compensation mechanism in MOCVD and MBE grown GaN:Mg. Physica B 308–310, 38 (2001).Google Scholar
33Kim, H., Kang, T.W. and Chung, K.S.: Nanoscale Ultraviolet-Light-Emitting Diodes Using Wide-Bandgap Gallium Nitride Nanorods Advanced Materials. Adv. Mater. 15, 567 (2003).CrossRefGoogle Scholar
34Saarinen, K., Laine, T., Kuisma, S., Nissila, J., Hautojarvil, P., Dobrzynski, L., Baranowski, J.M., Pakula, K., Stepniewski, R., Wojdak, M., Wysmolek, A., Suski, T., Leszcynsky, M., Grzegory, L. and Porowski, S.: Observation of Native Ga Vacancies in GaN by Positron Annihilation. Phys. Rev. Lett. 79, 3030 (1997).Google Scholar