Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-09T21:55:35.425Z Has data issue: false hasContentIssue false

Grain size effect on deformation twin thickness in a nanocrystalline metal with low stacking-fault energy

Published online by Cambridge University Press:  14 June 2019

Yusheng Li
Affiliation:
Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Liangjuan Dai
Affiliation:
Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Yang Cao
Affiliation:
Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Yonghao Zhao*
Affiliation:
Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Yuntian Zhu
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
*
a)Address all correspondence to this author. e-mail: yhzhao@njust.edu.cn
Get access

Abstract

Grain size effect on twin thickness has been rarely investigated, especially when the grain size is less than 1000 nm. In our previous work (Mater. Sci. Eng.A527, 3942, 2010), different severe plastic deformation techniques were used to achieve a wide range of grain sizes from about 3 μm to 70 nm in a Cu–30% Zn alloy. Transmission electron microscopy (TEM) revealed a gradual decrease in the deformation twin thickness with decreasing grain size. In the present work, high-resolution TEM was used to further identify deformation twins and measure their thickness, especially for grain sizes below 70 nm. The twin thickness was found to gradually reduce with decreasing grain size, until a critical size (20 nm), below which only stacking faults were observed. Interestingly, the relationship between twin thickness and grain size in the ultrafine/nanocrystalline regime is found similar to that in the coarse-grained regime, despite the differences in their twinning mechanisms. This work provides a large set of data for setting up a model to predict the twin thickness in ultrafine-grained and nanocrystalline face-centered cubic materials.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lu, L., Shen, Y.F., Chen, X.H., Qian, L.H., and Lu, K.: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).CrossRefGoogle ScholarPubMed
Shen, Y.F., Lu, L., Lu, Q.H., Jin, Z.H., and Lu, K.: Tensile properties of copper with nano-scale twins. Scripta Mater. 52, 989 (2005).CrossRefGoogle Scholar
Zhu, Y.T., Liao, X.Z., and Wu, X.L.: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).CrossRefGoogle Scholar
Ni, S., Wang, Y.B., Liao, X.Z., Li, H.Q., Figueiredo, R.B., Ringer, S.P., Langdon, T.G., and Zhu, Y.T.: Effect of grain size on the competition between twinning and detwinning in nanocrystalline metals. Phys. Rev. B 84, 235401 (2011).CrossRefGoogle Scholar
Li, Y.S., Tao, N.R., and Lu, K.: Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 56, 230 (2008).CrossRefGoogle Scholar
Zhao, F., Wang, L., Fan, D., Bie, B.X., Zhou, X.M., Suo, T., Li, Y.L., Chen, M.W., Liu, C.L., Qi, M.L., Zhu, M.H., and Luo, S.N.: Macrodeformation twins in single-crystal aluminum. Phys. Rev. Lett. 116, 075501 (2016).CrossRefGoogle ScholarPubMed
Chen, M., Ma, E., Hemker, K.J., Sheng, H., Wang, Y., and Cheng, X.: Deformation twinning in nanocrystalline aluminum. Science 300, 1275 (2003).CrossRefGoogle ScholarPubMed
Liao, X.Z., Zhou, F., Lavernia, E.J., He, D.W., and Zhu, Y.T.: Deformation twins in nanocrystalline Al. Appl. Phys. Lett. 83, 5062 (2003).CrossRefGoogle Scholar
Wu, X.L. and Zhu, Y.T.: Inverse grain-size effect on twinning in nanocrystalline Ni. Phys. Rev. Lett. 101, 025503 (2008).CrossRefGoogle ScholarPubMed
Lu, L., Chen, X., Huang, X., and Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 323, 607 (2009).CrossRefGoogle ScholarPubMed
Huang, Q., Yu, D., Xu, B., Hu, W., Ma, Y., Wang, Y., Zhao, Z., Wen, B., He, J., Liu, Z., and Tian, Y.: Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250 (2014).CrossRefGoogle ScholarPubMed
An, X.H., Wu, S.D., Wang, Z.G., and Zhang, Z.F.: Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems. Prog. Mater. Sci. 101, 1 (2019).CrossRefGoogle Scholar
Li, Y.S., Zhang, Y., Tao, N.R., and Lu, K.: Effect of the Zener–Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation. Acta Mater. 57, 761 (2009).CrossRefGoogle Scholar
Meyers, M.A., Vöhringer, O., and Lubarda, V.A.: The onset of twinning in metals: A constitutive description. Acta Mater. 49, 4025 (2001).CrossRefGoogle Scholar
Mahajan, S. and Chin, G.Y.: Formation of deformation twins in fcc crystals. Acta Metall. 21, 1353 (1973).CrossRefGoogle Scholar
Zhu, Y.T., Liao, X.Z., Srinivasan, S.G., Zhao, Y.H., Baskes, M.I., Zhou, F., and Lavernia, E.J.: Nucleation and growth of deformation twins in nanocrystalline aluminum. Appl. Phys. Lett. 85, 5049 (2004).CrossRefGoogle Scholar
Cao, Y., Wang, Y.B., Liao, X.Z., Kawasaki, M., Ringer, S.P., Langdon, T.G., and Zhu, Y.T.: Applied stress controls the production of nano-twins in coarse-grained metals. Appl. Phys. Lett. 101, 231903 (2012).CrossRefGoogle Scholar
McCabe, R.J., Beyerlein, I.J., Carpenter, J.S., and Mara, N.A.: The critical role of grain orientation and applied stress in nanoscale twinning. Nat. Commun. 5, 3806 (2014).CrossRefGoogle ScholarPubMed
Li, Y., Zhao, Y.H., Liu, W., Xu, C., Horita, Z., Liao, X.Z., Zhu, Y.T., Langdon, T.G., and Lavernia, E.J.: Influence of grain size on the density of deformation twins in Cu–30% Zn alloy. Mater. Sci. Eng., A 527, 3942 (2010).CrossRefGoogle Scholar
Beyerlein, I.J., Capolungo, L., Marshall, P.E., McCabe, R.J., and Tomé, C.N.: Statistical analyses of deformation twinning in magnesium. Philos. Mag. 90, 2161 (2010).CrossRefGoogle Scholar
Randle, V.: Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials. Acta Mater. 47, 4187 (1999).CrossRefGoogle Scholar
Kibey, S., Liu, J.B., Johnson, D.D., and Sehitoglu, H.: Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation. Acta Mater. 55, 6843 (2007).CrossRefGoogle Scholar
An, X.H., Song, M., Huang, Y., Liao, X.Z., Ringer, S.P., Langdon, T.G., and Zhu, Y.T.: Twinning via the motion of incoherent twin boundaries nucleated at grain boundaries in a nanocrystalline Cu alloy. Scripta Mater. 72, 35 (2014).CrossRefGoogle Scholar
Wang, J., Li, N., Anderoglu, O., Zhang, X., Misra, A., Huang, J.Y., and Hirth, J.P.: Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58, 2262 (2010).CrossRefGoogle Scholar
Cohen, J.B. and Weertman, J.: A dislocation model for twinning in fcc metals. Acta Metall. 11, 971 (1963).Google Scholar
Venables, J.A.: Deformation twinning in face-centred cubic metals. Philos. Mag. 6, 379 (1961).CrossRefGoogle Scholar
Mahajan, S.: Critique of mechanisms of formation of deformation, annealing and growth twins: Face-centered cubic metals and alloys. Scripta Mater. 68, 95 (2013).CrossRefGoogle Scholar
Kumar, K.S., Van Swygenhoven, H., and Suresh, S.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).CrossRefGoogle Scholar
Shan, Z., Stach, E.A., Wiezorek, J.M.K., Knapp, J.A., Follstaedt, D.M., and Mao, S.X.: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).CrossRefGoogle ScholarPubMed
Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., and Gleiter, H.: Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater. 1, 45 (2002).CrossRefGoogle ScholarPubMed
Huang, C.X., Wang, K., Wu, S.D., Zhang, Z.F., Li, G.Y., and Li, S.X.: Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater. 54, 655 (2006).CrossRefGoogle Scholar
Cao, Y., Ni, S., Liao, X.Z., Song, M., and Zhu, Y.T.: Structural evolutions of metallic materials processed by severe plastic deformation. Mater. Sci. Eng., R 133, 1 (2018).CrossRefGoogle Scholar
Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., and Gleiter, H.: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3, 43 (2004).CrossRefGoogle ScholarPubMed
Van Swygenhoven, H., Derlet, P.M., and Froseth, A.G.: Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3, 399 (2004).CrossRefGoogle ScholarPubMed
Ni, S., Wang, Y.B., Liao, X.Z., Figueiredo, R.B., Li, H.Q., Ringer, S.P., Langdon, T.G., and Zhu, Y.T.: The effect of dislocation density on the interactions between dislocations and twin boundaries in nanocrystalline materials. Acta Mater. 60, 3181 (2012).CrossRefGoogle Scholar
Li, N., Wang, J., Misra, A., Zhang, X., Huang, J.Y., and Hirth, J.P.: Twinning dislocation multiplication at a coherent twin boundary. Acta Mater. 59, 5989 (2011).CrossRefGoogle Scholar
Zhang, J.Y., Liu, G., Wang, R.H., Sun, J., and Ma, E.: Double-inverse grain size dependence of deformation twinning in nanocrystalline Cu. Phys. Rev. B 81, 172104 (2010).CrossRefGoogle Scholar
Li, J.S., Cao, Y., Gao, B., Li, Y.S., and Zhu, Y.T.: Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure. J. Mater. Sci. 53, 10442 (2018).CrossRefGoogle Scholar
Hsiao, H.Y., Liu, C.M., Lin, H.W., Liu, T.C., Lu, C.L., Huang, Y.S., Chen, C., and Tu, K.N.: Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper. Science 336, 1007 (2012).CrossRefGoogle ScholarPubMed
Ma, X.L., Xu, W.Z., Zhou, H., Moering, J.A., Narayan, J., and Zhu, Y.T.: Alloying effect on grain-size dependent deformation twinning in nanocrystalline Cu–Zn alloys. Philos. Mag. 95, 301 (2015).CrossRefGoogle Scholar
Carter, C.B. and Ray, I.L.F.: On the stacking-fault energies of copper alloys. Philos. Mag. 35, 189 (1977).CrossRefGoogle Scholar
Zhao, Y.H., Liao, X.Z., Zhu, Y.T., Horita, Z., and Langdon, T.G.: Influence of stacking fault energy on nanostructure formation under high pressure torsion. Mater. Sci. Eng., A 410, 188 (2005).CrossRefGoogle Scholar
Zhu, Y.T. and Lowe, T.C.: Observations and issues on mechanisms of grain refinement during ECAP process. Mater. Sci. Eng., A 291, 46 (2000).CrossRefGoogle Scholar
Valiev, R.Z. and Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).CrossRefGoogle Scholar