Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-01T16:46:09.742Z Has data issue: false hasContentIssue false

Functionalization of carbon-bonded alumina filters through the application of active oxide coatings for steel melt filtration

Published online by Cambridge University Press:  02 May 2013

Marcus Emmel*
Affiliation:
Technical University of Freiberg, Institute of Ceramic, Glass and Construction Materials, 09596 Freiberg, Germany
Christos G. Aneziris
Affiliation:
Technical University of Freiberg, Institute of Ceramic, Glass and Construction Materials, 09596 Freiberg, Germany
*
a)Address all correspondence to this author. e-mail: Marcus.Emmel@ikgb.tu-freiberg.de
Get access

Abstract

Carbon-bonded alumina filters for steel melt filtration are increasingly used by industries. Their potential regarding the material characteristics and the filtration efficiency appears, however, not used in full measure up to now. In the course of the present work, a new approach, due to the application of active oxide coatings, whose chemical phase equates to that of the nonmetallic oxidic inclusions in the steel melt, was created. The main emphasis consists of the generation of cold-applied, active alumina, spinel, and mullite coatings. Coatings have been developed due to the variation of sintering temperatures and a thermal pretreatment, which lead to increasing cold crushing strength. A basic understanding regarding the adhesion and the interface between the oxide coating and the carbon-bonded filter substrate has been created. Therefore, the essential factor is traceable back to thermal-related mechanisms.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Janke, D. and Raiber, K.: Grundlegende Untersuchungen zur Optimierung der Filtration von Stahlschmelzen. Technische Forschung Stahl (Europäische Kommission, Luxembourg, 1996) ISBN 92-827-6458-3.Google Scholar
Bargel, H-J.; Schulze, G.: Eisenwerkstoffe. Werkstoffkunde (Springer-Verlag, Berlin Heidelberg New York, 2005) ISBN 3-540-26107-9.CrossRefGoogle Scholar
Jacobi, H.: The process metallurgy and materials engineering of steel with high purity and cleanness. In Feuerfeste Werkstoffe und Systeme für die Erzeugung hochreiner Stähle, Pro-ceedings of XXXVII. Internationales Feuerfest-Kolloquium, Stahl und Eisen Special 1994, 1994; pp. 5–16.Google Scholar
Ovtchinnikov, S.: Kontrollierte Erstarrung und Einschlussbildung bei der Desoxidation von hochreinen Stahlschmelzen (TU Bergakademie Freiberg, Germany Diss., 2002).Google Scholar
Wasai, K., Mukai, K., and Miyanaga, A.: Observation of inclusion in aluminum deoxidized iron. ISIJ Int. 42(5), 459466 (2002).CrossRefGoogle Scholar
Adams, A. and Tackaberry, T.: Ceramic filters for ductile iron filtration - your last chance to trap inclusions. Ductile Iron News 3, 1994, pp. 38.Google Scholar
Mogilevskii, E.I. and Burtsev, V.I.: Production technology and tests of ceramic filters for refining precision alloys. Refract. Ind. Ceram. 41, 2830 (2000).CrossRefGoogle Scholar
Aneziris, C.G., Ansorge, A., and Jaunich, H.: New approaches of carbon bonded foam filters for filtration of large castings. Ceramic Forum International Special Refractories for Clean Steel Technology 85(10), E100E103 (2008).Google Scholar
Hasterok, M., Wenzel, C., Aneziris, C.G., Ballaschk, U., and Berek, H.: Processing of ceramic preforms for TRIP-matrix-composites. Steel Res. Int. 82(9), 10321039 (2011).CrossRefGoogle Scholar
Olson, R.A. III and Martins, L.C.B.: Cellular ceramics in metal filtration. Adv. Eng. Mat. 7(4), 187192 (2005).CrossRefGoogle Scholar
Hammerschmid, P. and Janke, D.: Kenntnisstand zur Abscheidung von Einschlüssen beim Filtrieren von Stahlschmelzen. Stahl und Eisen 108(5), 211219 (1988).Google Scholar
Hammerschmid, P., Raiber, K., and Janke, D.: Abscheidung von Tonerdeeinschlüssen aus Stahl- und Nickel-Basis-Schmelzen mit keramischen Filtern. Konferenz-Einzelbericht: Stahl und Eisen, Special 1994 (1994); pp. 58–64.Google Scholar
Morales, R.D., Davila-Maldonado, O., Adams, A., Oliveira, L., and Alquist, B.: Computer and fluid flow modeling of filtration mechanisms in foam filters. AFS Trans. 116, 715731 (2008).Google Scholar
Uemura, K., Takahashi, M., Koyama, S., and Nitta, M.: Filtration mechanism of non-metallic inclusions in steel by ceramic loop filter. ISIJ Int. 32, 150156 (1992).CrossRefGoogle Scholar
Janiszewski, K. and Kudlinski, Z.: Removal of liquid non-metallic inclusion from molten steel using the method filtration. Metal 19 (2006)Google Scholar
Aneziris, C.G., Dudczig, S., Hubálková, J., Emmel, M., and Schmidt, G.: Alumina coatings on carbon bonded alumina nozzles for active filtration of steel melts. Ceram. Int. 39(3), 28352843 (2013).CrossRefGoogle Scholar
Davila-Maldonaldo, O., Adams, A., Oliveira, L., Alquist, B., and Morales, R.D.: Simulation of fluid and inclusions dynamics during filtration operations of ductile iron melts using foam filters. Metall. Mater. Trans. B 39(6), 818839 (2008).CrossRefGoogle Scholar
Emmel, M. and Aneziris, C.G.: Development of novel carbon bonded filter compositions for steel filtration. Ceram. Int. 38(6), 51655172 (2012).CrossRefGoogle Scholar
Fischer, U.: Optimierte Auftragsverfahren in der Spritzglasiertechnologie. Freiberger Forschungshefte A897 (Freiberg, 2009) ISBN 978-3-86012-368-3.Google Scholar