Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T19:51:21.069Z Has data issue: false hasContentIssue false

Fracture resistance of Cu/Nb metallic nanolayered composite

Published online by Cambridge University Press:  15 May 2019

Sixie Huang
Affiliation:
Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
Caizhi Zhou*
Affiliation:
Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
*
a)Address all correspondence to this author. e-mail: zhouc@mst.edu
Get access

Abstract

In this work, molecular dynamics simulations to explore the crack propagation and fracture behavior of Cu/Nb metallic nanolayered composites (MNCs) were performed. The results of this study are consistent with the previous experimental results, which illustrated that cracks in Cu and Nb layers may exhibit different propagation paths and distances under the isostrain loading condition. The analysis reveals that the interface can increase the fracture resistance of the Nb layer in Cu/Nb MNCs by providing the dislocation sources to generate the plastic strain at the front of the crack. Increasing the layer thickness can enhance the fracture resistance of both Cu and Nb layers, as the critical stress for activating the dislocation motion decreases with the increment of the layer thickness. In addition, grain boundaries (GBs) in polycrystalline Cu/Nb samples would decrease the fracture resistance of Nb layer by promoting the crack propagate along the GBs, i.e., intergranular fracture, while the effect of interface and layer thickness on the fracture resistance of MNCs will not be altered by introducing the GBs in MNCs.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Höchbauer, T., Misra, A., Hattar, K., and Hoagland, R.: Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites. J. Appl. Phys. 98, 123516 (2005).CrossRefGoogle Scholar
Misra, A., Hirth, J., Hoagland, R., Embury, J., and Kung, H.: Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers. Acta Mater. 52, 2387 (2004).CrossRefGoogle Scholar
Wang, Y-C., Misra, A., and Hoagland, R.: Fatigue properties of nanoscale Cu/Nb multilayers. Scr. Mater. 54, 1593 (2006).CrossRefGoogle Scholar
Misra, A., Demkowicz, M., Zhang, X., and Hoagland, R.: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 62 (2007).CrossRefGoogle Scholar
Shao, S. and Medyanik, S.N.: Interaction of dislocations with incoherent interfaces in nanoscale FCC–BCC metallic bi-layers. Modell. Simul. Mater. Sci. Eng. 18, 055010 (2010).CrossRefGoogle Scholar
Shao, S., Zbib, H.M., Mastorakos, I., and Bahr, D.F.: Effect of interfaces in the work hardening of nanoscale multilayer metallic composites during nanoindentation: A molecular dynamics investigation. J. Eng. Mater. Technol. 135, 021001 (2013).CrossRefGoogle Scholar
Hoagland, R.G., Kurtz, R.J., and Henager, C. Jr.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50, 775 (2004).CrossRefGoogle Scholar
Mastorakos, I., Abdolrahim, N., and Zbib, H.: Deformation mechanisms in composite nano-layered metallic and nanowire structures. Int. J. Mech. Sci. 52, 295 (2010).CrossRefGoogle Scholar
Shao, S., Wang, J., Beyerlein, I.J., and Misra, A.: Glide dislocation nucleation from dislocation nodes at semi-coherent {111} Cu–Ni interfaces. Acta Mater. 98, 206 (2015).CrossRefGoogle Scholar
Misra, A., Hirth, J., and Kung, H.: Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers. Philos. Mag. A 82, 2935 (2002).CrossRefGoogle Scholar
Misra, A., Hirth, J., and Hoagland, R.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
Huang, S., Beyerlein, I.J., and Zhou, C.: Nanograin size effects on the strength of biphase nanolayered composites. Sci. Rep. 7, 11251 (2017).CrossRefGoogle ScholarPubMed
Huang, S., Wang, J., and Zhou, C.: Effect of plastic incompatibility on the strain hardening behavior of Al–TiN nanolayered composites. Mater. Sci. Eng., A 636, 430 (2015).CrossRefGoogle Scholar
Kavarana, F., Ravichandran, K., and Sahay, S.: Nanoscale steel-brass multilayer laminates made by cold rolling: Microstructure and tensile properties. Scr. Mater. 42, 947 (2000).CrossRefGoogle Scholar
Zhu, X.F., Li, Y.P., Zhang, G.P., Tan, J., and Liu, Y.: Understanding nanoscale damage at a crack tip of multilayered metallic composites. Appl. Phys. Lett. 92, 1 (2008).CrossRefGoogle Scholar
Zhang, J.Y., Zhang, X., Wang, R.H., Lei, S.Y., Zhang, P., Niu, J.J., Liu, G., Zhang, G.J., and Sun, J.: Length-scale-dependent deformation and fracture behavior of Cu/(X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase. Acta Mater. 59, 7368 (2011).CrossRefGoogle Scholar
Hattar, K., Misra, A., Dosanjh, M.R.F., Dickerson, P., Robertson, I.M., and Hoagland, R.G.: Direct observation of crack propagation in copper–niobium multilayers. J. Eng. Mater. Technol. 134, 021014 (2012).CrossRefGoogle Scholar
Radchenko, I., Anwarali, H.P., Tippabhotla, S.K., and Budiman, A.S.: Effects of interface shear strength during failure of semicoherent metal–metal nanolaminates: An example of accumulative roll-bonded Cu/Nb. Acta Mater. (2018).CrossRefGoogle Scholar
Li, Y., Zhou, Q., Zhang, S., Huang, P., Xu, K., Wang, F., and Lu, T.: On the role of weak interface in crack blunting process in nanoscale layered composites. Appl. Surf. Sci. 433 (2018).CrossRefGoogle Scholar
Huang, S., Wang, J., Li, N., Zhang, J., and Zhou, C.: Atomistic simulations of plasticity in heterogeneous nanocrystalline Ni lamella. Comput. Mater. Sci. 141, 229 (2018).CrossRefGoogle Scholar
Latapie, A. and Farkas, D.: Molecular dynamics investigation of the fracture behavior of nanocrystalline α-Fe. Phys. Rev. B 69, 460 (2004).CrossRefGoogle Scholar
Zhou, H., Qu, S., and Yang, W.: Toughening by nano-scaled twin boundaries in nanocrystals. Modell. Simul. Mater. Sci. Eng. 18, 065002 (2010).CrossRefGoogle Scholar
Zeng, Z., Li, X., Lu, L., and Zhu, T.: Fracture in a thin film of nanotwinned copper. Acta Mater. 98, 313 (2015).CrossRefGoogle Scholar
Huang, S., Wang, J., and Zhou, C.: Deformation of heterogeneous nanocrystalline lamella with a preexisting crack. JOM 70, 60 (2018).CrossRefGoogle Scholar
Shao, S., Wang, J., Misra, A., and Hoagland, R.G.: Spiral patterns of dislocations at nodes in (111) semi-coherent FCC interfaces. Sci. Rep. 3, 2448 (2013).CrossRefGoogle ScholarPubMed
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Liang, Z., Enrique, M., Alfredo, C., Xiang-Yang, L., and Michael, J.D.: Liquid-phase thermodynamics and structures in the Cu–Nb binary system. Modell. Simul. Mater. Sci. Eng. 21, 025005 (2013).Google Scholar
Honeycutt, J.D. and Andersen, H.C.: Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950 (1987).CrossRefGoogle Scholar
Mastorakos, I.N., Bellou, A., Bahr, D.F., and Zbib, H.M.: Size-dependent strength in nanolaminate metallic systems. J. Mater. Res. 26, 1179 (2011).CrossRefGoogle Scholar
Abdolrahim, N., Zbib, H.M., and Bahr, D.F.: Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int. J. Plast. 52, 33 (2014).CrossRefGoogle Scholar
Martínez, E., Caro, A., and Beyerlein, I.J.: Atomistic modeling of defect-induced plasticity in CuNb nanocomposites. Phys. Rev. B 90, 054103 (2014).CrossRefGoogle Scholar
Zhou, J., Averback, R., and Bellon, P.: Stability and amorphization of Cu–Nb interfaces during severe plastic deformation: Molecular dynamics simulations of simple shear. Acta Mater. 73, 116 (2014).CrossRefGoogle Scholar
Misra, A. and Krug, H.: Deformation behavior of nanostructured metallic multilayers. Adv. Eng. Mater. 3, 217 (2001).3.0.CO;2-5>CrossRefGoogle Scholar
Schiøtz, J., Vegge, T., Di Tolla, F.D., and Jacobsen, K.W.: Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B 60, 11971 (1999).CrossRefGoogle Scholar
Zhu, Y., Li, Z., and Huang, M.: The size effect and plastic deformation mechanism transition in the nanolayered polycrystalline metallic multilayers. J. Appl. Phys. 115, 233508 (2014).CrossRefGoogle Scholar
Hoover, W.G.: Constant-pressure equations of motion. Phys. Rev. A 34, 2499 (1986).CrossRefGoogle ScholarPubMed
Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511 (1984).CrossRefGoogle Scholar
Zimmerman, J.A., Bammann, D.J., and Gao, H.: Deformation gradients for continuum mechanical analysis of atomistic simulations. Int. J. Solids Struct. 46, 238 (2009).CrossRefGoogle Scholar
Stukowski, A., Bulatov, V.V., and Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012).CrossRefGoogle Scholar
Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009).CrossRefGoogle Scholar
Zhang, Y., Tucker, G.J., and Trelewicz, J.R.: Stress-assisted grain growth in nanocrystalline metals: Grain boundary mediated mechanisms and stabilization through alloying. Acta Mater. 131, 39 (2017).CrossRefGoogle Scholar