Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-31T16:33:05.775Z Has data issue: false hasContentIssue false

Fracture behavior of short-fiber reinforced materials

Published online by Cambridge University Press:  31 January 2011

Michael Murat
Affiliation:
Department of Physics and Applied Mathematics, Soreq Nuclear Research Center, Yavne 70600, Israel
Micha Anholt
Affiliation:
Department of Physics and Applied Mathematics, Soreq Nuclear Research Center, Yavne 70600, Israel
H. Daniel Wagner
Affiliation:
Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel
Get access

Abstract

A discrete model of springs with bond-bending forces is proposed to simulate the fracture process in a composite of short stiff fibers in a softer matrix. Both components are assumed to be linear elastic up to failure. We find that the critical fiber length of a single fiber composite increases roughly linearly with the ratio of the fiber elastic modulus to matrix modulus. The finite size of the lattice in the direction perpendicular to the fiber orientation considerably alters the behavior of the critical length for large values of the modulus ratio. The simulations of the fracture process reveal different fracture behavior as a function of the fiber content and length. We calculate the Young's modulus, fracture stress, and the strain at maximum stress as a function of the fiber volume fraction and aspect ratio. The results are compared with the predictions of other theoretical studies and experiments.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hull, D., An Introduction to Composite Materials (Cambridge University Press, Cambridge, 1981).Google Scholar
2Duxbury, P. M., in Statistical Models for the Fracture of Disordered Media, edited by Herrmann, H. J. and Roux, S. (North-Holland, Amsterdam, 1990), p. 189.CrossRefGoogle Scholar
3Termonia, Y., J. Mater. Sci. 22, 504 (1987).CrossRefGoogle Scholar
4Termonia, Y., J. Mater. Sci. 22, 1733 (1987).CrossRefGoogle Scholar
5Termonia, Y., J. Mater. Sci. 25, 4644 (1990).CrossRefGoogle Scholar
6For a recent review, see Statistical Models for the Fracture of Disordered Media, edited by Herrmann, H. J. and Roux, S. (North-Holland, Amsterdam, 1990).Google Scholar
7Beale, P. D. and Srolovitz, D. J., Phys. Rev. B 37, 5500 (1988).CrossRefGoogle Scholar
8Curtin, W.A. and Scher, H., J. Mater. Res. 5, 535 (1990).CrossRefGoogle Scholar
9Roux, S. and Guyon, E., J. Phys. Lett. (Paris) 46, L999 (1985).CrossRefGoogle Scholar
10Herrmann, H. J., Hansen, A., and Roux, S., Phys. Rev. B 39, 637 (1989).CrossRefGoogle Scholar
11Sahu, S. and Broutman, L.J., Polym. Engin. Sci. 12, 91 (1972).CrossRefGoogle Scholar
12Gent, A.N. and Wang, C., J. Mater. Sci. 27, 2539 (1992).CrossRefGoogle Scholar
13Kleinert, H., Gauge Fields in Condensed Matter (World Scientific, Singapore, 1989), Vol. 2, p. 768.CrossRefGoogle Scholar
14Feng, S. and Sen, P.N., Phys. Rev. Lett. 52, 216 (1984).CrossRefGoogle Scholar
15Lemieux, M.A., Breton, P., and Trembley, A-M.S., J. Phys. Lett. (Paris) 46, LI (1985).CrossRefGoogle Scholar
16Arcangelis, L. de, Hansen, A., Herrmann, H. J., and Roux, S., Phys. Rev. B 40, 877 (1989).CrossRefGoogle Scholar
17Kantor, Y. and Webman, I., Phys. Rev. Lett. 52, 1891 (1984).CrossRefGoogle Scholar
18Arbabi, S. and Sahimi, M., Phys. Rev. B 38, 7173 (1988).CrossRefGoogle Scholar
19Louis, E., Guinea, F., and Flores, F., in Fractals in Physics, edited by Pietronero, L. and Tossatti, E. (Elsevier, Amsterdam, 1986).Google Scholar