Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-28T07:02:25.294Z Has data issue: false hasContentIssue false

Formation of tetragonal YBa2Cu3O7−δ from an undercooled melt

Published online by Cambridge University Press:  03 March 2011

J.R. Olive
Affiliation:
Vanderbilt University, Nashville, Tennessee 37235
W.H. Hofmeister
Affiliation:
Vanderbilt University, Nashville, Tennessee 37235
R.J. Bayuzick
Affiliation:
Vanderbilt University, Nashville, Tennessee 37235
G. Carro
Affiliation:
Vanderbilt University, Nashville, Tennessee 37235
J.P. McHugh
Affiliation:
Westinghouse Science and Technology Center, Pittsburgh, Pennsylvania 15235
R.H. Hopkins
Affiliation:
Westinghouse Science and Technology Center, Pittsburgh, Pennsylvania 15235
M. Vlasse
Affiliation:
Marshall Space Flight Center, Huntsville, Alabama 35812
J.K.R. Weber
Affiliation:
Intersonics, Inc., Northbrook, Illinois 60062
P.C. Nordine
Affiliation:
Intersonics, Inc., Northbrook, Illinois 60062
M. McElfresh
Affiliation:
Purdue University, West Lafayette, Indiana 47907
Get access

Abstract

Containerless processing of YBa2Cu3O7−δ was performed using an aero-acoustic levitation technique. Upon solidification from the liquid, spheres of size 2.5 mm diameter undercooled and recalesced, forming tetragonal YBa2Cu3O7−δ directly from the melt. Subsequent to solidification processing, these samples were annealed to single phase YBa2Cu3O7−δ with orthorhombic symmetry as indicated by powder XRD, SQUID magnetometer measurements indicate a sharp superconducting transition at approximately 85 K. Magnetic Jc values, calculated using the Bean critical state model, indicate that the spheres can carry critical current densities on the order of 104 A cm−2. Microstructural characterization has been performed on both the as-solidified and annealed spheres.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jones, H., Mater. Sci. Eng. A 137, 77 (1991).CrossRefGoogle Scholar
2Olive, J. R., Hofmeister, W. H., Bayuzick, R. J., Carro, G., McHugh, J. P., Hopkins, R. H., Vlasse, M., Weber, J. K. R., and Nordine, P. C., in Containerless Processing Techniques and Applications, edited by Hofmeister, W. H. and Schiffman, R. S. (The Minerals, Metals, and Materials Society, Warrendale, PA, 1993), p. 111.Google Scholar
3Weber, J. K. R., Zima, W. P., Nordine, P. C., Goretta, K. C., and Poeppel, R. B., in Containerless Processing Techniques and Applications, edited by Hofmeister, W. H. and Schiffman, R. S. (The Minerals, Metals, and Materials Society, Warrendale, PA, 1993), p. 123.Google Scholar
4Weber, J. K. R., Hampton, D. S., Merkley, D. R., Rey, C. A., Zatarski, M. M., and Nordine, P. C., in review by Rev. Sci. Instrum. and Ceram. Bull. 70, 71 (1991).Google Scholar
5Todt, V. R. and Schmitz, G. J., J. Mater. Res. 8, 411 (1993).CrossRefGoogle Scholar
6Folkerts, T. J., Kramer, M. J., Dennis, K. W., and McCallum, R. W., J. Mater. Res. 6, 2035 (1991).CrossRefGoogle Scholar
7Bean, C. T., Phys. Rev. Lett. 8, 250 (1962).CrossRefGoogle Scholar
8Bertero, G. A., Hofmeister, W. H., Robinson, M. B., and Bayuzick, R. J., Metall. Trans. A 22, 2723 (1991).CrossRefGoogle Scholar
9Robinson, M. B., Bayuzick, R. J., and Hofmeister, W. H., Adv. Space Res. 8, 321 (1988).CrossRefGoogle Scholar