Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-14T17:47:12.720Z Has data issue: false hasContentIssue false

Formation of Al2O3 grains with different sizes and morphologies during the pulse electric current sintering process

Published online by Cambridge University Press:  31 January 2011

S. W. Wang
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
L. D. Chen
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
T. Hirai
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
Jingkun Guo
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Get access

Abstract

Commercial micrometer Al2O3 powder was sintered at 1550 °C under a mechanical pressure of 30 MPa by pulse electric current sintering (PECS). Microstructure observation was performed on polished, thermal-etched cross sections parallel to the direction of mechanical pressure. Platelike Al2O3 grains formed when the powder was heated at a heating rate of 5 °C/min, while a heating rate of 200 °C/min resulted in equiaxed grains. These results indicated that PECS is an effective approach to hinder grain growth by application of a higher heating rate. However, Al2O3 grains at the upper edge were larger than those at the side edge of the samples in both cases. It implied that there were different temperatures at the upper edge and the side edge of the Al2O3 powder compacts during the PECS process.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Groza, J.R., Risbud, S. H., and Yamazaki, K., J. Mater. Res. 7, 2643 (1992).CrossRefGoogle Scholar
2.Kinemuchi, Y., Funakoshi, H., and Ishizaki, K., J. Ceram. Soc. Jpn. 106, 535 (1998).CrossRefGoogle Scholar
3.Perera, D. S., Tokita, M., and Moricca, S., J. Eur. Ceram. Soc. 18, 401 (1998).CrossRefGoogle Scholar
4.Nishimura, T., Mitomo, M., Hirotsuru, H., and Kawahara, M., J. Mater. Sci. Lett. 14, 1046 (1995).CrossRefGoogle Scholar
5.Kang, Y. S., Noda, Y., Chen, L. D., Kisara, K., and Niino, N., in Proceedings of the 4th International Symposium on Functionally Graded Materials, edited by Shiota, I. and Miyamoto, Y. (Tsukuba, Japan, 1996), p. 569.Google Scholar
6.Murayama, N., Ceramics 32, 445 (1997).Google Scholar
7.Kinemuchi, Y. and Ishizaki, K., in Proceedings of the 22nd Annual Cocoa Beach Conference and Exposition On Composites, Advanced Ceramics, Materials and Structures, edited by the Am. Ceram. Soc., Cocoa Beach, FL (Am. Ceram. Soc., Westerville, OH, 1998), paper No. SI016.Google Scholar
8.Yoshimura, M., Ohji, T., Sekkino, T., and Niihara, K., J. Mater. Sci. Lett. 17, 1389 (1998).CrossRefGoogle Scholar
9.Kawaoka, H., Choa, Y-H., and Niihara, K., Key Eng. Mater. 161–163, 225 (1999).Google Scholar
10.Yoshimura, M., Ohji, T., Sando, M., Choa, Y-H., Sekkino, T., and Niihara, K., Mater. Lett. 38, 18 (1999).CrossRefGoogle Scholar
11.Omori, M. and Hirai, T., New Ceram. 7, 23 (1994).Google Scholar
12.Yanagisawa, O., Hatayama, T., and Matsugi, K., Mater. Jpn. 33, 1489 (1994).CrossRefGoogle Scholar
13.Risbud, S. H., Shan, C-H., Mukherjee, A. K., Kim, M. J., Bow, J. S., and Holl, R. A., J. Mater. Res. 10, 237 (1995).CrossRefGoogle Scholar
14.Tokita, M., Functionally Graded Materials 1998, edited by Kaysser, W. A. (Trans. Tech. Publications, Switzerland, 1999), p. 83.Google Scholar
15.Nage, T., Yokota, M., and Nose, M., J. Jpn. Soc. Powder Powder Metall. 45, 169 (1998).CrossRefGoogle Scholar
16.Wang, S. W., Chen, L. D., Kang, Y. S., and Hirai, T., J. Mater. Sci. Lett. 18, 1119 (1999).CrossRefGoogle Scholar
17.Wang, S. W., Chen, L. D., and Hirai, T., J. Mater. Res. 15, 982 (2000).CrossRefGoogle Scholar
18.Cahoon, H. P. and Christensen, C. J., J. Am. Ceram. Soc. 39, 337 (1956).CrossRefGoogle Scholar
19.Song, Huesup and Coble, R. L., J. Am. Ceram. Soc. 73, 2077 (1990).CrossRefGoogle Scholar
20.Koyama, T., Nishiyama, A., and Niihara, K., J. Mater. Sci. 28, 5953 (1993).CrossRefGoogle Scholar
21.Nightingale, S. A., Worner, H. K., and Dunne, D. P., J. Am. Ceram. Soc. 80, 394 (1997).CrossRefGoogle Scholar
22.Tomino, H., Watanabe, H., and Kondo, Y., J. Jpn. Soc. Powder Powder Metall. 44, 974 (1997).CrossRefGoogle Scholar
23.Roy, J. F., Descemond, M., Brodhag, C., and Thevenot, F., J. Eur. Ceram. Soc. 11, 325 (1993).CrossRefGoogle Scholar