Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T08:31:56.843Z Has data issue: false hasContentIssue false

Fatigue stress concentration and notch sensitivity in nanocrystalline metals

Published online by Cambridge University Press:  11 March 2016

Timothy A. Furnish
Affiliation:
Materials Science & Engineering, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Brad L. Boyce*
Affiliation:
Materials Science & Engineering, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
John A. Sharon
Affiliation:
Materials Science & Engineering, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA; and currently employed at United Technologies Research Center, Hartford, Connecticut 06118, USA
Christopher J. O’Brien
Affiliation:
Materials Science & Engineering, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Blythe G. Clark
Affiliation:
Materials Science & Engineering, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Christian L. Arrington
Affiliation:
Microsystems Science, Technology & Components, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Jamin R. Pillars
Affiliation:
Microsystems Science, Technology & Components, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
*
a)Address all correspondence to this author. e-mail: blboyce@sandia.gov
Get access

Abstract

Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zones underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. The onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Padilla, H.A. II and Boyce, B.L.: A review of fatigue behavior in nanocrystalline metals. Exp. Mech. 50(1), 5 (2010).CrossRefGoogle Scholar
Hanlon, T., Kwon, Y.N., and Suresh, S.: Grain size effects on the fatigue response of nanocrystalline metals. Scr. Mater. 49(7), 675 (2003).CrossRefGoogle Scholar
Cavaliere, P.: Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. Int. J. Fatigue 31(10), 1476 (2009).CrossRefGoogle Scholar
Hanlon, T., Tabachnikova, E.D., and Suresh, S.: Fatigue behavior of nanocrystalline metals and alloys. Int. J. Fatigue 27(10–12), 1147 (2005).CrossRefGoogle Scholar
Boyce, B.L. and Padilla, H.A.: Anomalous fatigue behavior and fatigue-induced grain growth in nanocrystalline nickel alloys. Metall. Mater. Trans. A 42, 1793 (2011).Google Scholar
Kumar, S., Alam, M.T., and Haque, M.A.: Fatigue insensitivity of nanoscale freestanding aluminum films. J. Microelectromech. Syst. 20(1), 53 (2011).CrossRefGoogle Scholar
Garbacz, H., Pakiela, Z., and Kurzydlowski, K.J.: Fatigue properties of nanocrystalline titanium. Rev. Adv. Mater. Sci. 25, 256 (2010).Google Scholar
Witney, A.B., Sanders, P.G., Weertman, J.R., and Eastman, J.A.: Fatigue of nanocrystalline copper. Scr. Metall. Mater. 33(12), 2025 (1995).CrossRefGoogle Scholar
Koch, C.C.: Nanostructured Materials: Processing, Properties, and Applications, 2nd ed. (William Andrew, Norwich, 2007).Google Scholar
Sanders, P.G., Youngdahl, C.J., and Weertman, J.R.: The strength of nanocrystalline metals with and without flaws. Mater. Sci. Eng., A 234–236, 77 (1997).CrossRefGoogle Scholar
Lai, L.C., Chiou, W.A., and Earthman, J.C.: Influence of electrical discharged machining and surface defects on the fatigue strength of electrodeposited nanocrystalline Ni. Int. J. Fatigue 32(3), 584 (2010).CrossRefGoogle Scholar
Hugo, R.C., Kung, H., Weertman, J.R., Mitra, R., Knapp, J.A., and Follstaedt, D.M.: In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater. 51(7), 1937 (2003).CrossRefGoogle Scholar
Peterson, R.E. and Plunkett, R.: Stress concentration factors. J. Appl. Mech. 42, 248 (1975).Google Scholar
Bishop, J.E., Emery, J.M., Field, R.V., Weinberger, C.R., and Littlewood, D.J.: Direct numerical simulations in solid mechanics for understanding the macroscale effects of microscale material variability. Comput. Methods Appl. Mech. Eng. 287, 262 (2015).CrossRefGoogle Scholar
Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427 (2006).CrossRefGoogle Scholar
Kim, H.S. and Bush, M.B.: The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostruct. Mater. 11(3), 361 (1999).Google Scholar
Giallonardo, J.D., Erb, U., Aust, K.T., and Palumbo, G.: The influence of grain size and texture on the Young's modulus of nanocrystalline nickel and nickel-iron alloys. Philos. Mag. 91(36), 4594 (2011).Google Scholar
Yen, C.S. and Dolan, T.J.: A critical review of the criteria for notch-sensitivity in fatigue of metals. Univ. Ill. Bull. 49(53), 12 (1952).Google Scholar
Kumar, S., Li, X., Haque, A., and Gao, H.: Is stress concentration relevant for nanocrystalline metals? Nano Lett. 11(6), 2510 (2011).Google Scholar
Kumar, S., Haque, M.A., and Gao, H.: Notch insensitive fracture in nanoscale thin films. Appl. Phys. Lett. 94(25), 253104 (2009).Google Scholar
Suresh, S.: Fatigue of Materials, 2nd ed. (Cambridge University Press, New York, 1998).Google Scholar
Dieter, G.E.: Mechanical Metallurgy, 3rd ed. (McGraw-Hill, Boston, 1986).Google Scholar
Pilkey, W.D. and Pilkey, D.F.: Peterson's Stress Concentration Factors, 3rd ed. (John Wiley and Sons, Inc., Hoboken, 2008).Google Scholar
Lukáš, P., Kunz, L., and Svoboda, M.: Fatigue notch sensitivity of ultrafine-grained copper. Mater. Sci. Eng., A 391(1–2), 337 (2005).Google Scholar
Garbacz, H., Motyka, M., Ziaja, W., Lewandowska, M., Sieniawski, J., and Topolski, K.: High cycle fatigue strength of hydrostatically extruded nanocrystalline CP titanium. In Proceedings of the 12th World Conference on Titanium, Z. Lian, ed. (Science press, Beijing, 2011).Google Scholar
Hosseinian, E. and Pierron, O.N.: Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films. Nanoscale 5(24), 12532 (2013).CrossRefGoogle ScholarPubMed
Suryanarayana, C.: Experimental Techniques in Materials and Mechanics (CRC Press Taylor & Francis Group, Boca Raton, 2011); pp. 9495.CrossRefGoogle Scholar
Cullity, B.D.: Elements of X-ray Diffraction (Addison-Wesley publishing company, Inc., Reading, 1956).Google Scholar
Vicenzo, A.: Structure and mechanical properties of electrodeposited Ni–Fe alloys. J. Electrochem. Soc. 160(11), D570 (2013).Google Scholar
Ullal, Y. and Hegde, A.C.: Electrodeposition and electro-catalytic study of nanocrystalline Ni–Fe alloy. Int. J. Hydrogen Energy 39(20), 10485 (2014).Google Scholar
Cymboliste, M.: The formation and growth of pits in electrodeposited metals. J. Electrochem. Soc. 70(1), 379 (1936).Google Scholar
Watanabe, T.: Nano-Plating: Microstructure Control Theory of Plated Film and Data Base of Plated Film Microstructure (Elsevier Inc., San Diego, 2004); pp. 8284.Google Scholar
Bloom, J.M. and Ekvall, J.C.: Probabilistic Fracture Mechanics and Fatigue Methods: Applications for Structural Design and Maintenance (ASTM, Philiadelphia, 1981).Google Scholar
Sharon, J.A., Padilla, H.A. II, and Boyce, B.L.: Interpreting the ductility of nanocrystalline metals. J. Mater. Res. 28(12), 1539 (2013).Google Scholar
Yang, Y., Imasogie, B., Fan, G.J., Liaw, P.K., and Soboyejo, W.O.: Fatigue and fracture of a bulk nanocrystalline NiFe alloy. Metall. Mater. Trans. A 39(5), 1145 (2008).Google Scholar
Stephens, R.I., Fatemi, A., Stephens, R.R., and Fuchs, H.O.: Metal Fatigue in Engineering, 2nd ed. (John Wiley & Sons, Inc., New York, 2001).Google Scholar
Moser, B., Hanlon, T., Kumar, K.S., and Suresh, S.: Cyclic strain hardening of nanocrystalline nickel. Scr. Mater. 54(6), 1151 (2006).CrossRefGoogle Scholar
Panzarino, J.F., Ramos, J.J., and Rupert, T.J.: Quantitative tracking of grain structure evolution in a nanocrystalline metal during cyclic loading. Modell. Simul. Mater. Sci. Eng. 23, 025005 (2015).CrossRefGoogle Scholar
Hu, T-C., Wang, Y-T., Hsu, F-C., Sun, P-K., and Lin, M-T.: Cyclic creep and fatigue testing of nanocrystalline copper thin films. Surf. Coat. Technol. 2185, 393 (2013).Google Scholar
Meirom, R.A., Alsem, D.H., Romasco, A.L., Clark, T., Polcawich, R.G., Pulskamp, J.S., Dubey, M., Ritchie, R.O., and Muhlstein, C.L.: Fatigue-induced grain coarsening in nanocrystalline platinum films. Acta Mater. 59(3), 1141 (2011).Google Scholar
Horky, J., Khatibi, G., Setman, D., Weiss, B., and Zehetbauer, M.J.: Effect of microstructural stability on fatigue crack growth behaviour of nanostructured Cu. Mech. Mater. 67, 38 (2013).CrossRefGoogle Scholar
Mughrabi, H. and Höppel, H.W.: Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 32(9), 1413 (2010).Google Scholar
Kobayashi, S., Kamata, A., and Watanabe, T.: Roles of grain boundary microstructure in high-cycle fatigue of electrodeposited nanocrystalline Ni–P alloy. Scr. Mater. 61(11), 1032 (2009).CrossRefGoogle Scholar
Kobayashi, S., Kamata, A., and Watanabe, T.: A mechanism of grain growth-assisted intergranular fatigue fracture in electrodeposited nanocrystalline nickel–phosphorus alloy. Acta Mater. 91, 70 (2015).Google Scholar
Cheng, S., Lee, S.Y., Li, L., Lei, C., Almer, J., Want, X-L., Ungar, T., Wang, Y., and Liaw, P.K.: Uncommon deformation mechanisms during fatigue-crack propagation in nanocrystalline alloys. Phys. Rev. Lett. 110(135501), 135501-1 (2013).Google Scholar
Gu, X.W., Wu, Z., Zhang, Y-W., Srolovitz, D.J., and Greer, J.R.: Microstructure versus flaw: Mechanisms of failure and strength in nanostructures. Nano Lett. 13(11), 5703 (2013).CrossRefGoogle ScholarPubMed
Owolabi, G.M., Prasannavenkatesan, R., and McDowell, D.L.: Probabilistic framework for a microstructure-sensitive fatigue notch factor. Int. J. Fatigue 32(8), 1378 (2010).Google Scholar
Ren, W. and Nicholas, T.: Notch size effects on high cycle fatigue limit stress of Udimet 720. Mater. Sci. Eng., A 357(1–2), 141 (2003).CrossRefGoogle Scholar
McEvily, A.J., Endo, M., Yamashita, K., Ishihara, S., and Matsunaga, H.: Fatigue notch sensitivity and the notch size effect. Int. J. Fatigue 30(12), 2087 (2008).Google Scholar
Pluvinage, G. and Capelle, J.: On characteristic lengths used in notch fracture mechanics. Int. J. Fract. 187, 187 (2014).CrossRefGoogle Scholar
Ritchie, R.O., Knott, J.F., and Rice, J.R.: On the relationship between critcial tensile stress and fracture toughness in mild steel. J. Mech. Phys. Solids 21, 395 (1973).Google Scholar
Pluvinage, G.: Fracture and Fatigue Emanating from Stress Concentrators (Kluwer Academic Publishers, New York, 2004).Google Scholar
Battaile, C.C., Emery, J.M., Brewer, L.N., and Boyce, B.L.: Crystal plasticity simulations of microstructure-induced uncertainty in strain concentration near voids in brass. Philos. Mag. 95(10), 1069 (2015).Google Scholar
Lukáš, P. and Klesnil, M.: Fatigue limit of notched bodies. Mater. Sci. Eng. 34(1), 61 (1978).Google Scholar