Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T11:25:33.763Z Has data issue: false hasContentIssue false

A facile wet chemical route to prepare ZnO/TiO2 nanotube composites and their photocatalytic activities

Published online by Cambridge University Press:  31 January 2011

Lei Zhu*
Affiliation:
School of Materials Science and Engineering, Central South University, Changsha 410083, People's Republic of China; and The Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education of China, Changsha 410083, People's Republic of China
Guocong Liu*
Affiliation:
School of Materials Science and Engineering, Central South University, Changsha 410083, People's Republic of China; and Department of Chemistry, Yulin Normal University, Yulin 537000, People's Republic of China
Zhi Jian Zhang
Affiliation:
School of Materials Science and Engineering, Central South University, Changsha 410083, People's Republic of China; and The Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education of China, Changsha 410083, People's Republic of China
*
a)Address all correspondence to this author. e-mail: Gclzl_2009@163.com
b)Address all correspondence to this author. e-mail: gcl_109@163.com
Get access

Abstract

Highly dispersed ZnO/TiO2 nanotube composites (NTCs) were successfully synthesized by a facile ethylenediamine-assisted deposition-precipitation route. The characterizations from x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller, Fourier transform infrared, and ultraviolet-visible spectra revealed that hexagonal wurtzite phase ZnO NPs with an average size of about 2 nm were homogeneously dispersed and anchored on the surface of TiO2 nanotubes (NTs) to form ZnO/TiO2 NTCs. The as-prepared ZnO/TiO2 NTCs with the atom ratio Zn/Ti of 1:4 exhibited excellent photocatalytic activity for photodegradation of methyl orange compared with P25 and pure TiO2 NTs, which were mainly caused by an increase of interfacial charge transfer reactions and a decrease of electron-hole pair recombination on ZnO-TNTs heterojunction. Furthermore, ZnO/TiO2 NTCs possessed favorable recycle efficiency due to their relatively high sedimentation rate and only a slight decrease of photocatalytic activity after a six time recycle.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tada, H., Mitsui, T., Kiyonaga, T., Akita, T., Tanaka, K.J.All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nature 10, 782 (2006)CrossRefGoogle Scholar
2.Norris, D.J., Efros, A.L., Erwin, S.C.Doped nanocrystals. Science 319, 1776 (2008)CrossRefGoogle ScholarPubMed
3.Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A.Enhanced photocleavage of using titania nanotube arrays. Nano Lett. 5, 191 (2005)CrossRefGoogle ScholarPubMed
4.Sander, M.S., Cote, M.J., Gu, W., Kile, B.M., Tripp, C.P.Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrate. Adv. Mater. 16, 2052 (2004)CrossRefGoogle Scholar
5.Li, X.H., Liu, W.M., Li, H.L.Template synthesis of well-aligned titanium dioxide nanotubes. Appl. Phys. A: Mater. 80, 317 (2005)CrossRefGoogle Scholar
6.Chen, Q., Zhou, W.Z., Du, G.H., Peng, L.M.Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 14, 1208 (2002)3.0.CO;2-0>CrossRefGoogle Scholar
7.Sun, X.M., Li, Y.D.Synthesis and characterization of ion-exchangeable titanate nanotubes. J. Chem. Eur. 9, 2229 (2003)CrossRefGoogle ScholarPubMed
8.Li, H.B., Duan, X.C., Liu, G.C., Liu, X.Q.Photochemical synthesis and characterization of Ag/TiO2 nanotube composites. J. Mater. Sci. 43, 1669 (2008)CrossRefGoogle Scholar
9.Miao, L., Ina, Y., Tanemura, S., Jiang, T., Tanemura, M., Kaneko, K., Toh, S., Mori, Y.Fabrication and photochromic study of titanate nanotubes loaded with silver nanoparticles. Surf. Sci. 601, 2792 (2007)CrossRefGoogle Scholar
10.Li, H.B., Duan, X.C., Liu, G.C., Li, L.L.Synthesis and characterization of copper ions surface-doped titanium dioxide nanotubes. Mater. Res. Bull. 43, 1971 (2008)CrossRefGoogle Scholar
11.Macak, J.M., Stein, F-S., Schmuki, P.Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochem. Commun. 9, 1783 (2007)CrossRefGoogle Scholar
12.Tu, Y-F., Huang, S-Y., Sang, J-P., Zou, X-W.Synthesis and photocatalytic properties of Sn-doped TiO2 nanotube arrays. J. Alloys Compd. 482, 382 (2009)CrossRefGoogle Scholar
13.Hodos, M., Horvath, E., Haspel, H., Kukovecz, A., Konya, Z., Kiricsi, I.Photosensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles. Chem. Phys. Lett. 399, 512 (2004)CrossRefGoogle Scholar
14.Xiao, M.W., Wang, L.S., Huang, X.J., Wu, Y.D., Dang, Z.Synthesis and characterization of WO3/titanate nanotubes nanocomposite with enhanced photocatalytic properties. J. Alloys Compd. 470, 486 (2009)CrossRefGoogle Scholar
15.Hou, L-R., Yuan, C-Z., Peng, Y.Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites. J. Hazard Mater. B 139, 310 (2007)CrossRefGoogle ScholarPubMed
16.Wang, L.S., Xiao, M.W., Huang, X.J., Wu, Y.D.Synthesis, characterization, and photocatalytic activities of titanate nanotubes surface-decorated by zinc oxide nanoparticles. J. Hazard. Mater. 161, 49 (2009)CrossRefGoogle ScholarPubMed
17.Xu, J-C., Lu, M., Guo, X-Y., Li, H-L.Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water. J. Mol. Catal. A: Chem. 226, 123 (2005)CrossRefGoogle Scholar
18.Liu, G., Li, G.S., Qiu, X.Q., Li, L.P.Synthesis of ZnO/titanate nanocomposites with highly photocatalytic activity under visible light irradiation. J. Alloys Compd. 481, 492 (2009)CrossRefGoogle Scholar
19.Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K.Titania nanotubes prepared by chemical processing. Adv. Mater. 11, 1307 (1999)3.0.CO;2-H>CrossRefGoogle Scholar
20.Idakiev, V., Yuan, Z-Y., Tabakova, T., Su, B-L.Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction. Appl. Catal., A 281, 149 (2005)CrossRefGoogle Scholar
21.Wang, Y.Q., Hao, Y.Z., Cheng, H.M.The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode. J. Mater. Sci. 34, 2773 (1999)CrossRefGoogle Scholar
22.Choi, W.Y., Termin, A., Hoffmann, M.R.The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669 (1994)CrossRefGoogle Scholar
23.Zhao, Y., Li, C.Z., Liu, X.H., Gu, F., Du, H.L., Shi, L.Y.Zn-doped TiO2 nanoparticles with high photocatalytic activity synthesized by hydrogen–oxygen diffusion flame. Appl. Catal., B 79, 208 (2008)CrossRefGoogle Scholar
24.Jiang, Y.H., Sun, Y.M., Liu, H., Zhu, F.H., Yin, H.B.Solar photocatalytic decolorization of C.I. Basic Blue 41 in an aqueous suspension of TiO2–ZnO. Dyes Pigm. 78, 77 (2008)CrossRefGoogle Scholar
25.Zhou, M.H., Yu, J.G., Liu, S.W., Zhai, P.C., Jiang, L.Effects of calcinations temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method. J. Hazard. Mater. 154, 1141 (2008)CrossRefGoogle ScholarPubMed
26.Wang, N., Li, X.Y., Wang, Y.X., Hou, Y., Zou, X.J., Chen, G.H.Synthesis of ZnO/TiO2 nanotube composite film by a two-step route. Mater. Lett. 62, 3691 (2008)CrossRefGoogle Scholar
27.Zheng, L.R., Zheng, Y.H., Chen, C.Q.Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity. Inorg. Chem. 48, 1819 (2009)CrossRefGoogle ScholarPubMed
28.Zhu, B.L., Guo, Q., Huang, X.L., Wang, S.R., Zhang, S.M.Characterization and catalytic performance of TiO2 nanotubes-supported gold and copper particles. J. Mol. Catal. A: Chem. 249, 211 (2006)CrossRefGoogle Scholar
29.Akita, T., Okumura, M., Tanaka, K., Ohkuma, K., Kohyama, M., Koyanagi, T., Date, M., Tsubota, S., Haruta, M.Transmission electron microscopy observation of the structure of TiO2 nanotube and Au/TiO2 nanotube catalyst. Surf. Interface Anal. 37, 265 (2005)CrossRefGoogle Scholar
30.Tayade, R.J., Kulkarni, R.G., Jasra, R.V.Photocatalytic degradation of aqueous nitribenzene by nanocrystalline TiO2. Ind. Eng. Chem. Res. 45, 922 (2006)CrossRefGoogle Scholar
31.Tarafdar, A., Biswas, S., Pramanik, N.K., Pramanik, P.Synthesis of mesoporous chromium phosphate through an unconventional sol-gel route. Microporous Mesoporous Mater. 89, 204 (2006)CrossRefGoogle Scholar
32.Cai, W.Q., Yu, J.G., Mann, S.Template-free hydrothermal fabrication of hierarchically organized c-AlOOH hollow microspheres. Microporous Mesoporous Mater. 122, 42 (2009)CrossRefGoogle Scholar
33.Xiao, M.W., Wang, L.S., Wu, Y.D., Huang, X.J., Dang, Z.Preparation and characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties. Nanotechnology 19, 1 (2008)CrossRefGoogle ScholarPubMed
34.Xu, J.C., Shi, Y.L., Huang, J.E., Wang, B., Li, H.L.Doping metal ions only onto the catalyst surface. J. Mol. Catal. Chem. 219, 351 (2004)CrossRefGoogle Scholar
35.Bavykin, D.V., Lapkin, A.A., Plucinski, P.K., Friedrich, J.M., Walsh, F.C.TiO2 nanotube-supported ruthenium(III) hydrated oxide: A highly active catalyst for selective oxidation of alcohols by oxygen. J. Catal. 235, 10 (2005)CrossRefGoogle Scholar
36.Hu, Y.X., Ge, J.P., Sun, Y.G., Zhang, T.R., Yin, Y.D.A self-templated approach to TiO2 microcapsules. Nano Lett. 7, 1832 (2007)CrossRefGoogle ScholarPubMed
37.Zheng, Y.H., Chen, C.Q., Zhan, Y.Y., In, X.Y., Zheng, Q., Wei, K.M., Zhu, J.F., Zhu, Y-J.Luminescence and photocatalytic activity of ZnO nanocrystals: Correlation between structure and property. Inorg. Chem. 46, 6675 (2007)CrossRefGoogle ScholarPubMed
38.Musić, S., Popović, S., Maljković, M., Dragcčević, D.Influence of synthesis procedure on the formation and properties of zinc oxide. J. Alloys Compd. 347, 324 (2002)CrossRefGoogle Scholar
39.Lee, C-K., Liu, S-S., Juang, L-C., Wang, C-C., Lyu, M-D., Hung, S-H.Application of titanate nanotubes for dyes adsorptive removal from aqueous solution. J. Hazard. Mater. 148, 756 (2007)CrossRefGoogle ScholarPubMed
40.Ohno, T., Murakami, N., Tsubota, T., Nishimura, H.Development of metal cation compound-loaded S-doped TiO2 photocatalysts having a rutile phase under visible light. Appl. Catal., A 349, 70 (2008)CrossRefGoogle Scholar
41.Huang, C., Liu, X., Kong, L., Lan, W., Su, Q., Wang, Y.The structural and magnetic properties of Co-doped titanate nanotubes synthesized under hydrothermal conditions. Appl. Phys. A 87, 781 (2007)CrossRefGoogle Scholar
42.Wu, Z.B., Dong, F., Zhao, W.R., Wang, H.Q., Liu, Y., Guan, B.H.The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Nanotechnology 20, 235701 (2009)CrossRefGoogle ScholarPubMed
43.Prado, A.G.S., Costa, L.L.Photocatalytic decoloration of malachite green dye by application of TiO2 nanotubes. J. Hazard. Mater. 169, 297 (2009)CrossRefGoogle Scholar
44.Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., Hidaka, H.Exploiting the interparticle electron transfer process in the photocatalyzed oxidation of phenol,2-chlorophenol and pentachlorophenol: Chemical evidence for electron and hole transfer between coupled semiconductors. J. Photochem. Photobiol., A 85, 247 (1995)CrossRefGoogle Scholar
45.Hasnat, M.A., Uddin, M.M., Samed, A.J.F., Alam, S.S., Hossain, S.Adsorption and photocatalytic decolorization of a synthetic dye erythrosine on anatase TiO2 and ZnO surfaces. J. Hazard. Mater. 147, 471 (2007)CrossRefGoogle ScholarPubMed