Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-13T19:14:32.490Z Has data issue: false hasContentIssue false

Fabrication of porous hydroxyapatite ceramics by microwave processing

Published online by Cambridge University Press:  31 January 2011

Yi Fang
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Dinesh K. Agrawal
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Della M. Roy
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Rustum Roy
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Porous hydroxyapatite ceramics with porosity up to 73% have been fabricated by microwave processing at 1150 to 1200 °C for 1 to 5 min. Various porosities in these ceramics have been obtained by using starting materials with different morphology, adjusting green density, changing sintering time and temperature, as well as optionally mixing ammonium carbonate in the hydroxyapatite powder during the consolidation process. Porosity, microstructure, and diametral tensile strength of the porous hydroxyapatite ceramics have been studied.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Weber, J. N., Greer, R. T., Voight, B. T., White, E. W., and Roy, R., J. Ultrastructure Res. 26, 355366 (1969).CrossRefGoogle Scholar
2.White, R. A., Weber, J. N., and White, E. W., Science 176, 922924 (1972).CrossRefGoogle Scholar
3.White, E. W., Weber, J. N., Roy, D. M., Owen, E. L., Chiroff, R. T., and White, R. A., J. Biomed. Mater. Res. Symp. No. 6, 2327 (1975).CrossRefGoogle Scholar
4.Roy, D. M., “Porous Biomaterials and Method of Making Same”, U. S. Patent No. 3929971 (1975).Google Scholar
5.Roy, D. M. and Linnehan, S. K., Nature 247, 220222 (1974).CrossRefGoogle Scholar
6.Eysel, W. and Roy, D. M., “Topotactic Reaction of Aragonite to Hydroxyapatite”, Zeits. Kirst. 141, 1124 (1975).Google Scholar
7.Roy, R., Komarneni, S., and Yang, L. J., J. Am. Ceram. Soc. 68 (7), 392395 (1985).CrossRefGoogle Scholar
8.Komarneni, S. and Roy, R., Mater. Lett. 4 (2), 107110 (1986).CrossRefGoogle Scholar
9.Sutton, W. H., Am. Ceram. Soc. Bull. 68 (2), 376386 (1989).Google Scholar
10.Fang, Y., Agrawal, D. K., Roy, D. M., and Roy, R., “Microwave Sintering of Hydroxyapatite Ceramics”, submitted to J. Am. Ceram. Soc. (under review).Google Scholar
11.Takata, S., Wakabayashi, S., Noma, H., and Waktsuki, T., “Porous Hydroxyapatite Material for Artificial Bone Substitute”, U. S. Patent No. 4629464 (December 16, 1986).Google Scholar
12.Fang, Y., Agrawal, D. K., and Roy, D. M., “Thermal Stability of Synthetic Hydroxyapatite” (in preparation).Google Scholar
13.Monma, H. and Kamiya, T., J. Mater. Sci. 22, 42474250 (1987).CrossRefGoogle Scholar
14.Rudanick, A., Hunter, A. R., and Holden, F. C., “An Analysis of the Diametral-Compression Test”, Mat. Res. Standards, 283 (April 1963).Google Scholar
15.Lavernia, C. and Schoenung, J. M., Am. Ceram. Soc. Bull. 70 (1), 95100 (1991).Google Scholar