Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T18:25:52.525Z Has data issue: false hasContentIssue false

Fabrication of Nanoporous Ceramic Thin Films: De-alloying and Self-organized Template Formation Onamorphous Substrates

Published online by Cambridge University Press:  31 January 2011

Maggie Paulose
Affiliation:
Department of Electrical Engineering & Materials Research Institute, 208 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Oomman K. Varghese
Affiliation:
Department of Materials Science & Engineering, The Pennsylvania State University,University Park, Pennsylvania 16802
Craig A. Grimes
Affiliation:
Department of Electrical Engineering & Materials Research Institute, 208 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Sol-gel-derived metal oxide ceramic thin films deposited onto amorphous iron-rich substrates were found to form self-organized nanoporous structures dependent upon the extent to which the substrate is de-alloyed, a function of the substrate alloycomposition, acid concentration of the sol, and film drying conditions. Field emission scanning electron microscopy, transmission electron microscopy, and x-ray energy dispersive analysis were used to investigate details of the porous structure formation.Our studies showed the more electrochemically active elements in the amorphous substrate are de-alloyed by the sol in high-humidity environments, whereupon the liberated elements form oxides replicating the de-alloyed substrate matrix resulting in athree dimensional porous network structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yeh, Y.C., Tseng, T.Y., and Chang, D.A., J. of Am. Ceram. Soc. 72, 1472 (1989).CrossRefGoogle Scholar
Schierbaum, K.D., Kirner, U.K., Geiger, J.F., and Gopel, W., Sens. Actuators B, 4, 87 (1991).CrossRefGoogle Scholar
Birkefeld, L.D., Azad, A.M., and Akbar, S.A., J. Am. Ceram. Soc. 75, 2964 (1992).CrossRefGoogle Scholar
Xu, Q. and Anderson, M.A., J. Mater. Res. 6, 1073 (1991).CrossRefGoogle Scholar
Panjonk, G.M., Appl. Catalysis 72, 217 (1991).CrossRefGoogle Scholar
Kraeutler, B. and Bard, A.J., J. Am. Chem. Soc. 100, 5985 (1978).CrossRefGoogle Scholar
Fu, X., Zeltner, W.A., and Anderson, M.A., Appl. Catalysis B: Environmental 6, 209 (1995).CrossRefGoogle Scholar
Fujishima, A. and Honda, K., Nature 238, 37 (1972).CrossRefGoogle Scholar
Vogel, R., Hoyer, P., and Weller, H., J. Phys. Chem. 98, 3183 (1994).CrossRefGoogle Scholar
Rothenberger, G., Comte, P., and Gratzel, M., Sol. Energy Mater. Sol. Cells 58, 321 (1999).CrossRefGoogle Scholar
Regan, B.O. and Graetzel, M., Nature 353, 737 (1991).CrossRefGoogle Scholar
Liu, J. and Coleman, J.P., Mater. Sci. Eng. A 286, 144 (2000).CrossRefGoogle Scholar
Nagase, K., Shimizu, Y., Miura, N., and Yamazoe, N., J. Ceram. Soc., Japan 101, 1032 (1993).CrossRefGoogle Scholar
Brinker, C. J. and Scherer, G.W., Sol-Gel Science: The physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990).Google Scholar
Templin, M., Franck, A., Chesne, A.D., Leist, H., Zhang, Y., Ulrich, R., Schadler, V., and Weisner, U., Science 278, 1795 (1997).CrossRefGoogle Scholar
Velev, O.D., Jede, T.A., Lobo, R.F., and Lenhoff, A.M., Nature 389, 447 (1997).CrossRefGoogle Scholar
Kajihara, K. and Nakanishi, K., J. Mater. Res. 16, 59 (2001).CrossRefGoogle Scholar
Kajihara, K., Nakanishi, K., Tanaka, K., Hirao, K., and Soga, N., J. Am. Ceram. Soc. 81, 2670 (1998).CrossRefGoogle Scholar
Imhof, A. and Pine, D.J., Nature 389, 948 (1997).CrossRefGoogle Scholar
Wakayama, H., and Fukushima, Y., Ind. Eng. Chem. Res. 39, 4641 (2000).CrossRefGoogle Scholar
Karthaus, O., Maruyama, N., Cieren, X., Shimomura, M., Hasegawa, H., and Hashimoto, T., Langmuir 16, 6071 (2000).CrossRefGoogle Scholar
Grimes, C.A., Singh, R.S., Dickey, E.C., and Varghese, O.K., J. Mater. Res. 16, 1686 (2001).CrossRefGoogle Scholar
Ralls, K.M., Courtney, T.H., and Wulff, J., Introduction to Materials Science and Engineering (John Wiley & Sons, New York, 1976).Google Scholar
Evans, U.R., The Corrosion and Oxidation of Metals (Edward Arnold Ltd, London, United Kingdom, 1968).Google Scholar
Newman, R.C. and Sieradzki, K., Science 263, 1708 (1994).CrossRefGoogle Scholar
Landolt, L., Surf. Interface Anal. 15, 395 (1990).CrossRefGoogle Scholar
Williams, D.E., Newman, R.C., Song, Q., and Kelly, R.G., Nature 350, 216 (1991).CrossRefGoogle Scholar
Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., and Sieradzki, K., Nature 410, 450 (2001).CrossRefGoogle Scholar
Li, R. and Sieradzki, K., Phys. Rev. Lett. 68, 1168 (1992).CrossRefGoogle Scholar
The metglas alloys are a registered trademark of Honeywell Corporation. For product information see http://www.electronicmaterials.com:80/businesses/sem/amorph/page5_1_2.htmGoogle Scholar
Ito, Y., Biomater. 20, 2333 (1999).CrossRefGoogle Scholar
Boyan, B.D., Hummert, T.W., Dean, D.D., and Schwartz, Z., Biomater. 17, 137 (1996).CrossRefGoogle Scholar
Phani, G., Tulloch, G., Vittorio, D., and Skryabin, I., Renewable Energy 22, 303 (2001).CrossRefGoogle Scholar
Spano, M.L., Hathaway, K.B., and Savage, H.T., J. Appl. Phys. 53, 2667 (1982).CrossRefGoogle Scholar
Product information can be found at: http://www.vacuumschmelze.de/000p_fra.htm.Google Scholar
Jain, M., Schmit, S., Ong, K. G., Mungle, C., and Grimes, C.A., Smart Mater. Struct. 9, 502 (2000).CrossRefGoogle Scholar
Ding, X-Z., Liu, X-H., and He, Y-Z., J. Mater. Sci. Lett. 15, 1392 (1996).CrossRefGoogle Scholar
MacKenzie, K.J.D., Trans. J. British Ceram. Soc. 74, 29 (1975).Google Scholar
Shannon, R.D. and Pask, J.A., J. Am. Ceram. Soc. 48, 391(1965).CrossRefGoogle Scholar