Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-26T10:32:09.192Z Has data issue: false hasContentIssue false

Enthalpies of Formation of LaMO3 Perovskites (M = Cr, Fe, Co, and Ni)

Published online by Cambridge University Press:  03 March 2011

Jihong Cheng
Affiliation:
Thermochemistry Facility and NEAT ORU, University of California at Davis, Davis, California 95616
Alexandra Navrotsky*
Affiliation:
Thermochemistry Facility and NEAT ORU, University of California at Davis, Davis, California 95616
Xiao-Dong Zhou
Affiliation:
Electronic Materials Applied Research Center, University of Missouri–Rolla, Rolla, Missouri 65401
Harlan U. Anderson
Affiliation:
Electronic Materials Applied Research Center, University of Missouri–Rolla, Rolla, Missouri 65401
*
a)Address all correspondence to this author. e-mail: anavrotsky@ucdavis.edu
Get access

Abstract

Enthalpies of formation from constituent oxides and elements at 298 K were determined by high-temperature oxide melt solution calorimetry for a group of technologically important perovskites LaMO3 (M = Cr, Fe, Co, and Ni). The enthalpies of formation of LaCrO3 and LaFeO3 from oxides (La2O3 and Cr2O3 or Fe2O3) are –70.06 ± 2.79 kJ/mol and –64.58 ± 2.32 kJ/mol, respectively. The enthalpies of formation of LaCoO3 and LaNiO3 from oxides (La2O3 and CoO or NiO) and O2 are −107.64 ± 1.77 kJ/mol and –57.31 ± 2.55 kJ/mol, respectively. All these data are evaluated and found to be consistent with literature values obtained using other methods. The relative stability among these four perovskites decreases in the order of Cr, Fe, Co, Ni.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Minh, N.Q.: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
2Park, J.Y. and Choi, G.M.: Electrical conductivity of Sr and Mg doped LaAlO3. Solid State Ionics 154, 535 (2002).CrossRefGoogle Scholar
3Ishinhara, T., Matsuda, T. and Takita, Y.: Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 116, 3801 (1994).CrossRefGoogle Scholar
4Lybye, D. and Bonanos, N.: Proton and oxide ion conductivity of doped LaScO3. Solid State Ionics 125, 339 (1999).CrossRefGoogle Scholar
5He, H., Huang, X. and Chen, L.: Sr-doped LaInO3 and its possible application in a single layer SOFC. Solid State Ionics 130, 183 (2000).CrossRefGoogle Scholar
6Mori, M., Yamamoto, T., Itoh, H. and Watanabe, T.: Compatibility of alkaline earth metal (Mg, Ca, Sr)-doped lanthanum chromites as separators in planar-type high-temperature solid oxide fuel cells. J. Mater. Sci. 32, 2423 (1997).CrossRefGoogle Scholar
7Karim, D.P. and Aldred, A.T.: Localized level hopping transport in La(Sr)CrO3. Phys. Rev. B. 20, 2255 (1979).CrossRefGoogle Scholar
8Hammouche, A., Schouler, E.L. and Henault, M.: Electrical Properties of La1-xSrxMnO3 for x ≥ 0.5. Solid State Ionics 28, 1205 (1988).CrossRefGoogle Scholar
9Kuscer, D., Hanzel, D., Holc, J., Hrovat, M. and Kolar, D.: Defect structure and electrical properties of La1-ySryFe1-xAlxO3-δ. J. Am. Ceram. Soc. 84, 1148 (2001).CrossRefGoogle Scholar
10Petrov, N., Kononchuk, O.F., Andreev, A.V., Cherpanov, V.A. and Kofstad, P.: Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y. Solid State Ionics 80, 189 (1995).CrossRefGoogle Scholar
11Nagamoto, H., Mochida, I., Kagotani, K. and Inoue, H.: Change of thermal expansion coefficient and electrical conductivity of LaCo1-xMxO3 (M = Fe, Ni). J. Mater. Res. 8, 3158 (1993).CrossRefGoogle Scholar
12Mantzavinos, D., Hartley, A., Metcalfe, I.S. and Sahibzada, M.: Oxygen stoichiometries in La1-xSrxCo1-yAlyO3-δ at reduced oxygen partial pressures. Solid State Ionics 134, 103 (2000).CrossRefGoogle Scholar
13Hrovat, M., Katsarakis, N., Reichmann, K., Bernik, S., Kuscer, D. and Holc, J.: Characterization of LaNi1-xCoxO3 as a possible SOFC cathode material. Solid State Ionics 83, 99 (1996).CrossRefGoogle Scholar
14Huang, K., Lee, H.Y. and Goodenough, J.B.: Sr- and Ni-doped LaCoO3 and LaFeO3 perovskites. J. Electrochem. Soc. 145, 3220 (1998).CrossRefGoogle Scholar
15Navrotsky, A.: Progress and new directions in high temperature calorimetry. Phys. Chem. Miner. 2, 89 (1977).CrossRefGoogle Scholar
16Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 (1997).CrossRefGoogle Scholar
17Cheng, J. and Navrotsky, A.: Enthalpies of formation of LaBO3 perovskites (B = Al, Ga, Sc, and In. J. Mater. Res. 18, 2501 (2003).CrossRefGoogle Scholar
18Cheng, J. and Navrotsky, A.: Energetics of magnesium, strontium, and barium doped lanthanum gallate perovskites. J. Solid State Chem. 177, 126 (2004).CrossRefGoogle Scholar
19Provendier, H., Petit, C., Schmitt, J-L., Kiennemann, A. and Chaumont, C.: Characterization of the solid solution La(Ni,Fe)O3 prepared via a sol-gel related method using propionic acid. J. Mater. Sci. 34, 4121 (1999).CrossRefGoogle Scholar
20Majzlan, J., Navrotsky, A. and Evans, B.J.: Thermodynamics and crystal chemistry of the hematite-corundum solid solution and the FeAlO3 phase. Phys. Chem. Miner. 29, 515 (2002).CrossRefGoogle Scholar
21Drouet, C. and Navrotsky, A.: Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites. Geochim. Cosmochim. Acta 67, 2063 (2003).CrossRefGoogle Scholar
22Wang, M. and Navrotsky, A.: Enthalpy of formation of LiNiO2, LiCoO2, and their solid solution, LaNi1-xCoxO2. Solid State Ionics 166, 167 (2004).CrossRefGoogle Scholar
23Muller, F. and Kleppa, O.J.: Thermodynamics of formation of chromite spinels. J. Inorg. Nucl. Chem. 35, 2673 (1973).CrossRefGoogle Scholar
24Wood, B.J. and Kleppa, O.J.: Thermochemistry of forsterite-fayalite olivine solutions. Geochim. Cosmochim. Acta 45, 529 (1981).CrossRefGoogle Scholar
25Wood, B.J. and Kleppa, O.J.: Chromium-aluminum mixing in garnet: A thermochemical study. Geochim. Cosmochim. Acta 48, 1373 (1984).CrossRefGoogle Scholar
26Robie, R.A. and Hemingway, B.S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin, No. 2131, Washington DC, 1995.Google Scholar
27Cordfunke, E.H.P. and Konings, R.J.M.: The enthalpies of formation of lanthanide compounds III. Ln2O3 (cr). Thermochim. Acta 375, 65 (2001).CrossRefGoogle Scholar
28Peck, D., Miller, M., Kobertz, D., Nickel, H. and Hilert, K.: Vaporization of LaCrO3: Partial and integral thermodynamic properties. J. Am. Ceram. Soc. 79, 3266 (1996).CrossRefGoogle Scholar
29Yokokawa, H., Sakai, N., Kawada, T. and Dokiya, M.: Chemical thermodynamic considerations in sintering of LaCrO3-based perovskites. J. Electrochem. Soc. 138, 1018 (1991).CrossRefGoogle Scholar
30Azad, M., Sudha, R. and Sreedharan, O.M.: Thermodynamic stability of lanthanum chromite (LaCrO3) by a calcium fluoride-based EMF method. J. Less-Common Met. 166, 57 (1990).CrossRefGoogle Scholar
31Chen, S., Hao, Z., Li, F. and Zhou, G.: Determination of the standard free energy of formation of LaCrO3 at 1273 K. Zhongguo Xitu Xuebao 5, 19 (1987).Google Scholar
32Tanasescu, S., Totir, N.D. and Marchidan, D.I.: Thermodynamic properties of LaFeO3 studied by means of galvanic cells with solid oxide electrolyte. Mater. Res. Bull. 32, 925 (1997).CrossRefGoogle Scholar
33Sreedharan, O.M. and Chandrasekharaiah, M.S.: Standard Gibbs’ energy of formation of LaFeO3 and comparison of stability of LaMO3 (M = Mn, Fe, Co or Ni) compounds. J. Mater. Sci. 21, 2581 (1986).CrossRefGoogle Scholar
34Nakamura, T., Petzow, G. and Gauckler, L.J.: Stability of the perovskite phase LaBO3 (B = V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results. Mater. Res. Bull. 14, 649 (1979).CrossRefGoogle Scholar
35Katsura, T., Sekine, T., Kitayama, K., Sugihara, T. and Kimizuka, N.: Thermodynamic properties of Fe-lanthanoid –O compounds at high temperatures. J. Solid State Chem. 23, 43 (1978).CrossRefGoogle Scholar
36Tretyakov, Y.D., Kaul, A.R. and Portnoy, V.K.: Formation of rare earth and yttrium orthoferrites: A thermodynamic study. High Temp. Sci. 9, 61 (1977).Google Scholar
37Kimizuka, N. and Katsura, T.: The standard free energy of the formation of LaFeO3 at 1204 °C. Bull. Chem. Soc. Jpn. 47, 1801 (1974).CrossRefGoogle Scholar
38Parida, S.C., Singh, Z., Dash, S., Prasad, R. and Venugopal, V.: Thermodynamic studies on LaFeO3 (s). J. Alloys Compd. 280, 94 (1998).CrossRefGoogle Scholar
39Stolen, S., Gronvold, F., Rinks, H., Atake, T. and Mori, H.: Heat capacity and thermodynamic properties of LaFeO3 and LaCoO3 from T = 13 K to T = 1000 K. J. Chem. Thermodyn. 30, 365 (1998).Google Scholar
40Robie, R.A. and Hemingway, B.S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin, No. 2131, Washington DC, 1979.Google Scholar
41Kitayama, K.: Thermogravimetric study of the Ln2O3-Co-Co2O3 system. J. Solid State Chem. 131, 18 (1997).CrossRefGoogle Scholar
42Sreedharan, O.M. and Chandrasekharaiah, M.S.: Phase change and free energy of formation of lanthanum cobalt oxide by galvanic cell method. Mater. Res. Bull. 7, 1135 (1972).CrossRefGoogle Scholar
43Yokokawa, H., Kawada, T. and Dokiya, M.: Thermodynamic regularities in perovskite and K2NiF4 compounds. J. Am. Ceram. Soc. 72, 2104 (1989).CrossRefGoogle Scholar
44Parida, S.C., Singh, Z., Dash, S., Prasad, R. and Venugopal, V.: Standard molar Gibbs energies of formation of the ternary compounds in the La-Co-O system using solid oxide galvanic cell method. J. Alloys Compd. 285, 7 (1999).CrossRefGoogle Scholar
45Raghavan, S.: Standard Gibbs energy of formation of LaNiO3 using a calcium fluoride solid electrolyte galvanic cell. Trans. Indian Inst. Met. 47, 197 (1994).Google Scholar
46Sreedharan, O.M., Chandrasekharaiah, M.S. and Karkhanavala, M.D.: The free energy of formation of lanthanum nickelate. High Tem. Sci. 8, 179 (1976).Google Scholar
47Takayama-Muromachi, E. and Navrotsky, A.: Energetics of compounds (A2+B4+O3) with the perovskite structure. J. Solid State Chem. 72, 244 (1988).CrossRefGoogle Scholar
48Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
49Rormark, L., Stolen, S., Wiik, K. and Grande, T.: Enthalpies of formation of La1-xAxMnO3±δ (A = Ca and Sr) measured by high-temperature solution calorimetry. J. Solid State Chem. 163, 186 (2002).CrossRefGoogle Scholar
50Wachowski, Zielinski, and Burewicz, A.: Preparation, stability and oxygen stoichiometry in perovskite-type binary oxides. Acta Chim. Acad. Sci. Hung. 106, 217 (1981).Google Scholar