Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T17:05:14.681Z Has data issue: false hasContentIssue false

Enhanced strength and ductility of a tungsten-doped CoCrNi medium-entropy alloy

Published online by Cambridge University Press:  26 July 2018

Zhenggang Wu
Affiliation:
Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Wei Guo
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Ke Jin
Affiliation:
Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Jonathan D. Poplawsky
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Yanfei Gao*
Affiliation:
Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; and Department of Materials Science & Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
Hongbin Bei*
Affiliation:
Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
*
a)Address all correspondence to these authors. e-mail: YGao7@utk.edu
Get access

Abstract

Developing metallic materials with a good combination of strength and ductility has been an unending pursuit of materials scientists. The emergence of high/medium-entropy alloys (HEA/MEA) provided a novel strategy to achieve this. Here, we further strengthened a strong-and-ductile MEA using a traditional solid solution strengthening theory. The selection of solute elements was assisted by mechanical property and microstructure predictive models. Extensive microstructural characterizations and mechanical tests were performed to verify the models and to understand the mechanical behavior and deformation mechanisms of the designated CoCrNi–3W alloy. Our results show good experiment-model agreement. The incorporation of 3 at.% W into the ternary CoCrNi matrix increased its intrinsic strength by ∼20%. External strengthening through microstructural refinement led to a yield strength nearly double that of the parent alloy, CoCrNi. The increase in strength is obtained with still good ductility when tested down to 77 K. Nanoscale twin boundaries are observed in the post-fracture microstructure under 77 K. The combination of strength and ductility after W additions deviate from the traditional strength-ductility-trade-off contour.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

These authors contributed equally to this work.

References

REFERENCES

Avner, S.H.: Introduction to Physical Metallurgy (McGraw-Hill Inc., New York, 1964).Google Scholar
Ashby, M.F. and Jones, D.R.H.: Engineering Materials 2, Corrections ed. (Pergamon Press, Oxford, 1992).Google Scholar
Dieter, G.E.: Mechanical Metallurgy (McGraw-Hill Higher Education, New York, 1986).Google Scholar
Garstone, J. and Honeycombe, R.W.K.: Dislocations and Mechanical Properties of Crystals (John-Wiley, New York, 1957).Google Scholar
Liu, A.: Mechanics and Mechanisms of Fracture (ASM International, Materials Park, Ohio, 2005).Google Scholar
Lund, C.H. and Wagner, H.J.: Oxidation of Nickle- and Cobalt-Base Superalloys; (Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio, 1965).CrossRefGoogle Scholar
Soboyejo, W.O.: Advanced Structural Materials: Properties, Design Optimization, and Applications (CRC Press, Boca Raton, Florida, 2007).Google Scholar
Reed, R.C.: The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, U.K., 2006).CrossRefGoogle Scholar
Okuda, T. and Fujiwara, M.: Dispersion behaviour of oxide particles in mechanically alloyed ODS steel. J. Mater. Sci. Lett. 14, 1600 (1995).CrossRefGoogle Scholar
Ukai, S. and Fujiwara, M.: Perspective of ODS alloys application in nuclear environments. J. Nucl. Mater. 307–311, 749 (2002).CrossRefGoogle Scholar
Hsiung, L.L., Fluss, M.J., Tumey, S.J., William, C.B., Serruys, Y., Willaime, F., and Kimura, K.: Formation mechanism and the role of nanoparticles in Fe–Cr ODS steels developed for radiation tolerance. Phys. Rev. B 82, 184103 (2010).CrossRefGoogle Scholar
Wu, Z., Troparevsky, M.C., Gao, Y.F., Morris, J.R., Stocks, G.M., and Bei, H.: Phase stability, physical properties and strengthening mechanisms of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 267 (2017).CrossRefGoogle Scholar
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcome. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).CrossRefGoogle Scholar
Tsai, M.H. and Yeh, J.W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Ye, Y.H., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: High-entropy alloy: Challenges and prospects. Mater. Today 19, 349 (2016).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Wu, Z., Bei, H., Pharr, G.M., and George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Thurston, K., Bei, H., Wu, Z., George, E.P., and Ritchie, R.O.: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).CrossRefGoogle ScholarPubMed
Laplanche, G., Kostka, A., Reinhart, C., Hunfeld, J., Eggeler, G., and George, E.P.: Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 128, 292 (2017).CrossRefGoogle Scholar
Miao, J., Slone, C.E., Smith, T.M., Niu, C., Bei, H., Ghazisaeidi, M., Pharr, G.M., and Mills, M.J.: The evolution of the deformation substructure in a Ni–Co–Cr equiatomic solid solution alloy. Acta Mater. 132, 35 (2017).CrossRefGoogle Scholar
Stepanov, N.D., Shaysultanov, D.G., Yurchenko, N.Y., Zherebtsov, S.V., Ladygin, A.N., Salishchev, G.A., and Tikhonovsky, M.A.: High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy. Mater. Sci. Eng., A 636, 188 (2015).CrossRefGoogle Scholar
Patriarca, L., Ojha, A., Sehitogla, H., and Chumlyakov, Y.I.: Slip nucleation in single crystal FeNiCoCrMn high entropy alloy. Scr. Mater. 112, 54 (2016).CrossRefGoogle Scholar
Woo, W., Huang, E.W., Yeh, J.W., Choo, H., Lee, C., and Tu, S.: In situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy. Intermetallics 62, 1 (2015).CrossRefGoogle Scholar
Wu, Y., Liu, W.H., Wang, X.L., Ma, D., Stoica, A.D., Nieh, T.G., He, Z.B., and Lu, Z.P.: In situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Appl. Phys. Lett. 104, 051910 (2014).CrossRefGoogle Scholar
Moody, M.P., Stephenson, L.T., Ceguerra, A.V., and Ringer, S.P.: Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data. Microsc. Res. Tech. 71, 542 (2008).CrossRefGoogle ScholarPubMed
Guo, W., Garfinkel, D.A., Tucker, J.D., Haley, D., Young, G.A., and Poplawsky, J.D.: An atom probe perspective on phase separation and precipitation in duplex stainless steels. Nanotechnology 27, 254004 (2016).CrossRefGoogle ScholarPubMed
Cizek, L., Kratochvíl, P., and Smola, B.: Solid solution hardening of copper crystals. J. Mater. Sci. 9, 1517 (1974).CrossRefGoogle Scholar
Pohl, C., Schatte, J., and Leitner, H.: Solid solution hardening of molybdenum–hafnium alloys: Experiments and modeling. Mater. Sci. Eng., A 559, 643 (2013).CrossRefGoogle Scholar
Zander, J., Sandstrom, R., and Vitos, L.: Modelling mechanical properties for non-hardenable aluminium alloys. Comput. Mater. Sci. 41, 86 (2007).CrossRefGoogle Scholar
Gypen, L.A. and Deruyttere, A.: Multi-component solid solution hardening. J. Mater. Sci. 12, 1034 (1977).CrossRefGoogle Scholar
Wu, Z., Gao, Y., and Bei, H.: Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys. Acta Mater. 120, 108 (2016).CrossRefGoogle Scholar
Toda-Caraballo, I., Wrobel, J.S., Dudarev, S.L., Nguyen-Manh, D., and Rivera-Díaz-del-Castillo, P.E.J.: Interatomic spacing distribution in multicomponent alloys. Acta Mater. 97, 156 (2015).CrossRefGoogle Scholar
Toda-Caraballo, I. and Rivera-Díaz-del-Castillo, P.E.J.: Modelling solid solution hardening in high entropy alloys. Acta Mater. 85, 14 (2015).CrossRefGoogle Scholar
Gypen, L.A. and Deruyttere, A.: Multi-component solid solution hardening. J. Mater. Sci. 12, 1028 (1977).CrossRefGoogle Scholar
Labusch, R.: Statistische theorien der mischkristallhärtung. Acta Metall. 20, 917 (1972).CrossRefGoogle Scholar
Labusch, R.: A statistical theory of solid solution hardening. Phys. Status Solidi 41, 659 (1970).CrossRefGoogle Scholar
Haasen, P.: Physical Metallurgy, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1996).CrossRefGoogle Scholar
King, H.W.: Quantitative size-factors for metallic solid solutions. J. Mater. Sci. 1, 79 (1966).CrossRefGoogle Scholar
Schiotz, J. and Jacobsen, K.W.: A maximum in the strength of nanocrystalline copper. Science 301, 1086636 (2003).CrossRefGoogle ScholarPubMed
Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
Wu, Z., Bei, H., Otto, F., Pharr, G.M., and George, E.P.: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131 (2014).CrossRefGoogle Scholar
Humphreys, F.J. and Hatherly, M.: Recrystallization and Related Phenomena (Pergamon Press, Oxford, 2004); pp. 173 and 337.Google Scholar
Miller, M.K. and Forbes, R.G.: Atom-Probe Tomography: The Local Electrode Atom Probe (Springer, New York, 2014).CrossRefGoogle Scholar
Suzuki, H. and Barrett, C.S.: Deformation twinning in silver-gold alloys. Acta Metall. 6, 156 (1958).CrossRefGoogle Scholar
Yoshida, S., Bhattacharjee, T., Bai, Y., and Tsuji, N.: Friction stress and Hall–Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing. Scr. Mater. 134, 33 (2017).CrossRefGoogle Scholar
Blewitt, T.H., Coltman, R.R., and Redman, J.K.: Low temperature deformation of copper single crystals. J. Appl. Phys. 28, 651 (1957).CrossRefGoogle Scholar
Yang, P., Xie, Q., Meng, L., Ding, H., and Tang, Z.: Dependence of deformation twinning on grain orientation in a high manganese steel. Scr. Mater. 55, 629 (2006).CrossRefGoogle Scholar
Ueji, R., Tsuchida, N., Terada, D., Tsuji, N., Tanaka, Y., Takemura, A., and Kunishige, K.: Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scr. Mater. 59, 963 (2008).CrossRefGoogle Scholar
Gutierrez-Urrutia, I., Zaefferer, S., and Raabe, D.: The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt% Mn–0.6 wt% C TWIP steel. Mater. Sci. Eng., A 527, 3552 (2010).CrossRefGoogle Scholar
Gallagher, P.C.J.: The influence of alloying, temperature, and related effects on the stacking fault energy. Metall. Mater. Trans. A 1, 2429 (1970).Google Scholar