Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-21T14:55:23.362Z Has data issue: false hasContentIssue false

Embedded-atom-method functions for the body-centered-cubic iron and hydrogen

Published online by Cambridge University Press:  31 January 2011

Mao Wen
Affiliation:
Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology (AIST), AIST Chugoku, 2–2-2 Hiro-suehiro, Kure, Hiroshima, 737–0197, Japan
Xue-Jun Xu
Affiliation:
Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology (AIST), AIST Chugoku, 2–2-2 Hiro-suehiro, Kure, Hiroshima, 737–0197, Japan
Seiji Fukuyama
Affiliation:
Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology (AIST), AIST Chugoku, 2–2-2 Hiro-suehiro, Kure, Hiroshima, 737–0197, Japan
Kiyoshi Yokogawa*
Affiliation:
Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology (AIST), AIST Chugoku, 2–2-2 Hiro-suehiro, Kure, Hiroshima, 737–0197, Japan
*
a)Address all correspondence to this author. e-mail: yokogawa.kiyoshi@aist.go.jp
Get access

Abstract

A new reliable embedded atom method potential for hydrogen in body-centered-cubic (bcc) iron is developed by fitting not only to the properties of hydrogen in a perfect bcc iron lattice but also to the properties of hydrogen binding to vacancies. The validity of the potential is examined by calculating the properties of hydrogen trap binding to surfaces and dislocations that are in good accordance with the experiments. A brief application of the potential by molecular dynamic simulation reveals that hydrogen accumulated ahead of the crack tip induces serious hydrogen embrittlement.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Myers, S.M., Baskes, M.I., Birnbaum, H.K., Corbett, J.W., Deleo, G.G., Estreicher, S.K., Haller, E.E., Jena, P., Johnson, N.M., Kirchheim, R., Pearton, S.J., and Stavola, M.J., Rev. Mod. Phys. 64, 559 (1992).CrossRefGoogle Scholar
2.Daw, M.S. and Baskes, M.I., Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
3.Daw, M.S. and Baskes, M.I., Phys. Rev. Lett. B 29, 6443 (1984).CrossRefGoogle Scholar
4.Nørskov, J.K., Phys. Rev. B 26, 2875 (1982).CrossRefGoogle Scholar
5.Nørskov, J.K. and Besenbacher, F., J. Less-Common Met. 130, 475 (1987).CrossRefGoogle Scholar
6.Daw, M.S., Foils, S.M., and Baskes, M.I., Mater. Sci. Rep. 9, 251 (1993).CrossRefGoogle Scholar
7.Ruda, M., Farkas, D., and Abriata, J., Phys. Rev. B 54, 9765 (1996).CrossRefGoogle Scholar
8.Myers, S.M., Nordlander, P., Besenbacher, F., and Nørskov, J.K., Phys. Rev. B 33, 854 (1986).CrossRefGoogle Scholar
9.Myers, S.M., Wampler, W.R., Besenbacher, F., Robinson, S.L., and Moody, N.R., Mater. Sci. Eng. 69, 397 (1985).CrossRefGoogle Scholar
10.Besenbacher, F., Myers, S.M., and Nørskov, J.K., Nucl. Instrum. Methods B 7/8, 55 (1985).CrossRefGoogle Scholar
11.Angelo, J.E., Moody, N.R., and Baskes, M.I., Modell. Simul. Mater. Sci. Eng. 3, 289 (1995).CrossRefGoogle Scholar
12.Thomas, G.J., in Hydrogen Effects in Metals, edited by Bernstein, I.M. and Thompson, A.W. (Metallurgical Society of AIME, New York, 1980), p. 77.Google Scholar
13.Myers, S.M., Richards, P.M., and Wampler, W.R., Nucl, J.. Mater. 165, 9 (1989).Google Scholar
14.Johnson, R.A. and Oh, D.J., J. Mater. Res. 4(5), 1195 (1989).CrossRefGoogle Scholar
15.Haftel, M.I., Andreadis, T.D., Lill, J.V., and Eridon, J.M., Phys. Rev. B 42, 11540 (1990).CrossRefGoogle Scholar
16.Besenbacher, F., Myers, S.M., Norlander, P., and Nøvskov, J.K., J. Appl. Phys. 61, 1788 (1987).CrossRefGoogle Scholar
17.Baskes, M.I., Sha, X., Angelo, J.E., and Moody, N.R., Modell. Simul. Mater. Sci. Eng. 5, 651 (1997).CrossRefGoogle Scholar
18.Wipf, H., in Hydrogen in Metals III: Topics in Applied Physics, Vol. 73, edited by Wipf, H. (Springer-Verlag, Berlin, Heidelberg, Germany, 1997), p. 51.CrossRefGoogle Scholar
19.Hirth, J.P., Metall. Trans. 11A, 861 (1980).CrossRefGoogle Scholar
20.Myers, S.M., Picraux, S.T., and Stoltz, R.E., J. Appl. Phys. 50, 5710 (1979).CrossRefGoogle Scholar
21.Picraux, S.T., Nucl. Instrum. Methods 182–183, 413 (1981).CrossRefGoogle Scholar
22.Krüger, J., Kunze, H.D., and Schürmann, E., in Gas and Carbon in Metals, edited by Fromm, E. and Gebhardt, E. (Springer, Berlin, Germany, 1976), p. 578.Google Scholar
23.Blyholder, G., Head, J., and Ruette, F., Surf. Sci. 131, 403 (1983).CrossRefGoogle Scholar
24.Ono, K. and Meshi, M., Acta Metall. Mater. 40, 1357 (1992).CrossRefGoogle Scholar
25.Hu, Z., Fukuyama, S., Yokogawa, K., and Okamoto, S., Modell. Simul. Mater. Sci. Eng. 7, 541 (1999).CrossRefGoogle Scholar
26.Xu, X., Wen, M., Hu, Z., Fukuyama, S., and Yokogawa, K., Comput. Mater. Sci. (in press).Google Scholar
27.Hinotani, S., Ohmori, Y., and Terasaki, F., Mater. Sci. Tech. 10, 141 (1994).CrossRefGoogle Scholar
28.Troiano, A.R., Trans. ASM 52, 54 (1960).Google Scholar
29.Vehoff, H., in Hydrogen in Metals III: Topics in Applied Physics, Vol. 73, edited by Wipf, H. (Springer-Verlag, Berlin, Heidelberg, Germany, 1997), p. 215.CrossRefGoogle Scholar
30.Daw, M.S., Baskes, M.I., Bisson, C.L., and Wolfer, W.G., in Mod-eling Environmental Effects on Crack Growth Processes, edited by Jones, R.H. and Gerberich, W.W. (Metallurgical Society of AIME, New York, 1986), p. 99.Google Scholar