Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-03T14:10:20.516Z Has data issue: false hasContentIssue false

Electrochemical and kinetic study of as-cast and as-quench Mg2Ni-type hydrogen storage alloys

Published online by Cambridge University Press:  25 September 2013

Feng Hu*
Affiliation:
The School of Rare Earth, Inner Mongolia University of Science and Technology, Baotou 014010, China; and Elected State Key Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
Yanghuan Zhang
Affiliation:
Elected State Key Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
Yin Zhang
Affiliation:
The School of Rare Earth, Inner Mongolia University of Science and Technology, Baotou 014010, China
Ying Cai
Affiliation:
The School of Rare Earth, Inner Mongolia University of Science and Technology, Baotou 014010, China
Jianyi Xu
Affiliation:
The School of Rare Earth, Inner Mongolia University of Science and Technology, Baotou 014010, China
Zhonghui Hou
Affiliation:
The School of Rare Earth, Inner Mongolia University of Science and Technology, Baotou 014010, China
*
a)Address all correspondence to this author. e-mail: hufengnhm_001@163.com
Get access

Abstract

To improve the electrochemical and kinetic performances of the Mg2Ni-type hydrogen storage alloys, Mg was partially substituted by La, and the rapid solidification technology was used for the preparation of Mg20−xLaxNi10 (x = 0, 2, 4, 6) alloys. The microstructures of the as-cast Mg20−xLaxNi10 (x = 0, 2, 4, 6) and as-spun Mg20−xLaxNi10 (x = 2) alloys were systematically studied through x-ray diffraction and high-resolution transmission electronic microscopy. Electrochemical hydrogen storage properties were measured by the automatic galvanostatic system. Electrochemical impedance spectrum, linear polarization, and step-potential discharge curves were plotted using electrochemical workstation. The results showed that substitution of La for Mg was helpful for forming multiphase structures, increasing the discharge capacity of the as-cast Mg20−xLaxNi10 (x = 0, 2, 4, 6) alloys. The increasing quenching rate facilitated the formation of amorphous and nanocrystalline structures of Mg18La2Ni10 (La2) alloy, effectively improving the electrochemical and kinetic properties of Mg18La2Ni10 (La2) alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lupu, D., Biris, A., and Indrea, E.: Hydrogen absorption in beryllium substituted Mg2Ni. Int. J. Hydrogen Energy 7, 783 (1982).CrossRefGoogle Scholar
Zaluski, L., Zaluska, A., Tessier, P., Srom-Olsen, J-Q., and Schudz, R.: Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi. J. Alloys Compd. 217, 295 (1995).CrossRefGoogle Scholar
Fernandez, J-F., Bodega, J., and Sanchez, C-R.: Hydriding/dehydriding properties of Mg–ZrCr2 composites. J. Alloys Compd. 356357, 343 (2003).CrossRefGoogle Scholar
Orimo, S., Fujii, H., and Tabatu, M.: Synthesis of fine composite particles for hydrogen storage, starting from Mg-YNi2 mixture. J. Alloys Compd. 210, 37 (1994).CrossRefGoogle Scholar
Janot, R., Darok, X., Rougier, A., Aymard, L., Nazri, G-A., and Tarascon, J-M.: Hydrogen sorption properties for surface treated MgH2 and Mg2Ni alloys. J. Alloys Compd. 404406, 293 (2005).CrossRefGoogle Scholar
Sakintuna, B., Lamari-Darkrim, F., and Hirscher, M.: Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 32, 1121 (2007).CrossRefGoogle Scholar
Lei, Y-Q., Wu, Y-M., Yang, Q-M., Wu, J, and Wang, Q-D.: Electrochemical behaviour of some mechanically alloyed Mg-Ni-Based amorphous hydrogen storage alloys. Z. Phys. Chem. 183, 379 (1994).CrossRefGoogle Scholar
Kohno, T., Yamamoto, M., and Kanda, M.: Electrochemical properties of mechanically ground Mg2Ni alloy. J. Electrochem. Soc. 293295, 643 (1992).Google Scholar
Gasiorowski, A., Iwasieczbo, W., and Skoryna, D.: Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying(M=Mn, Al). J. Alloys Compd. 364, 283 (2004).CrossRefGoogle Scholar
Liang, G.: Synthesis and hydrogen storage properties of Mg-based alloys. J. Alloys Compd. 370, 123 (2004).CrossRefGoogle Scholar
Huang, L-J., Liang, G-Y., Sun, Z-B., and Zhou, Y-F.: Nanocrystallization and hydriding properties of amorphous melt-spun Mg65Cu25Nd10 alloy. J. Alloys Compd. 432, 172 (2007).CrossRefGoogle Scholar
Naka, M., Hashimoto, K., and Masumoto, T.: Corrosion resistance of amorphous iron alloys containing chromium. J. Jpn. Inst. Met. 38, 835 (1974).CrossRefGoogle Scholar
Huang, L-J., Liang, G-Y., Sun, Z-B., and Wu, D-C.: Electrode properties of melt-spun Mg–Ni–Nd amorphous alloys. J. Power Sources 160, 684 (2006).CrossRefGoogle Scholar
Zhang, Y-H., Guo, S-H., Qi, Y., Li, X., Ma, Z-H., and Zhang, Y.: Enhanced electrochemical characteristics of as-spun nanocrystalline and amorphous Mg2Ni-type alloy electrodes. J. Alloys Compd. 506, 749 (2010).CrossRefGoogle Scholar
Spassov, T. and Köster, U: Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy. J. Alloys Compd. 279, 279 (1998).CrossRefGoogle Scholar
Zhang, Y-H., Zhao, D-L., Ren, H-P., Guo, S-H., and Wang, X-L.: Hydriding and dehydriding characteristics of nanocrystalline and amorphous Mg20–xLaxNi10(x=0–6) alloys prepared by melt-spinning. J. Rare Earths 27, 514 (2009).CrossRefGoogle Scholar
Xie, D-H., Li, P., Zeng, C-X., Sun, J-W., and Qu, X-H.: Effect of substitution of Nd for Mg on the hydrogen storage properties of Mg2Ni alloy. J. Alloys Compd. 478, 96 (2009).CrossRefGoogle Scholar
Zhang, Y-H., Cai, Y., Wang, Y., Ren, H-P., Guo, S-H., and Zhao, D-L.: Electrochemical hydrogen storage properties of as-spun nanocrystalline/amorphous Mg2-xLaxNi (x=0-0.6). J. Funct. Mater. 42, 2200 (2011).Google Scholar
Izumi, F.: The Rietveld Method (Oxford University Press, Oxford, England, 1993), p. 573, 645.Google Scholar
Niu, H. and Northwood, D.O.: Enhanced electrochemical properties of ball-milled Mg2Ni electrodes. Int. J. Hydrogen Energy 27, 69 (2002).CrossRefGoogle Scholar
Zhang, Y-H., Li, B-W., Ren, H-P., Cai, Y., Dong, X-P., and Wang, X-L.: Investigation on structures and electrochemical performances of the as-cast and -quenched La0.7Mg0.3Co0.45Ni2.55-xFex(x=0-0.4) electrode alloys. Int. J. Hydrogen Energy 32, 4627 (2007).CrossRefGoogle Scholar
Zhang, W-L., Kumar, M-P-S., Srinivasan, S., and Ploehn, H-J.: AC Impedance studies on metal hydride electrodes TECHNICAL PAPERS - Electrochemical science and technology. J. Electrochem Soc. 142, 2935 (1995).CrossRefGoogle Scholar
Sakamoto, Y., Kuruma, K., Naritomi, Y., and Bunsenges, B.: Electrochemical hydrogen charge characteristics of metal hydride electrodes. Phys. Chem. 96, 1813 (1992).Google Scholar
Ratnakumar, B-V., Witham, C. Jr., Bowman, R-C., Hightower, A., and Fultz, B.: Electrochemical studies on LaNi5-xSnx metal hydride alloys. J. Electrochem. Soc. 143, 2578 (1996).CrossRefGoogle Scholar
Kuriyama, N., Sakai, T., Miyamura, H., Uehara, I., Ishikawa, H., and Iwasaki, T.: Electrochemical impedance and deterioration behavior of metal hydride electrodes. J. Alloys Compd. 202, 183 (1993).CrossRefGoogle Scholar
Notten, P-H-L. and Hokkeling, P.: Double-phase hydride forming compounds: A new class of highly electrocatalytic materials. J. Electrochem. Soc. 138, 1877 (1991).CrossRefGoogle Scholar
Nishina, T., Ura, H., and Uchida, I.: Determination of chemical diffusion coefficients in metal hydride particles with a microelectrode technique. J. Electrochem. Soc. 144(4), 1273 (1997).CrossRefGoogle Scholar
Zhang, G., Popov, B-N., and While, R-E.: Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution. J. Electrochem. Soc. 142, 2695 (1995).CrossRefGoogle Scholar
Wu, Y., Han, W, Zhou, S-X., Lototsky, M-V., Solberg, J-K., and Yartys, V-A.: Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg–10Ni–2Mm alloys. J. Alloys Compd. 466, 176 (2008).CrossRefGoogle Scholar