Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T22:41:38.369Z Has data issue: false hasContentIssue false

Elastic and nanostructural properties of Cu/Pd superlattices

Published online by Cambridge University Press:  31 January 2011

B.M. Davis
Affiliation:
Materials Science and Engineering Department and the Materials Research Center, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3108
D.X. Li
Affiliation:
Materials Science and Engineering Department and the Materials Research Center, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3108
D.N. Seidman
Affiliation:
Materials Science and Engineering Department and the Materials Research Center, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3108
J.B. Ketterson
Affiliation:
Physics and Astronomy Department and the Materials Research Center, College of Arts and Sciences, Northwestern University, Evanston, Illinois 60208
R. Bhadra
Affiliation:
Materials Science Division, Building 223, Argonne National Laboratory, Argonne, Illinois 60439
M. Grimsditch
Affiliation:
Materials Science Division, Building 223, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

A series of Cu/Pd superlattices with composition modulation wavelengths (Λ's) ranging from 1.6 to 3.5 nm and a strong [111] growth texture were prepared by electron beam evaporation. The elastic properties of the films were examined using the methods of uniaxial tension tests [a Young's modulus (1/s11), where sij is an elastic compliance] with the applied load parallel to the plane of the Cu/Pd interface and Brillouin scattering [a shear modulus (1/s44) with the shear waves parallel to the plane of the Cu/Pd interface]. Also, the films were characterized using both x-ray diffraction and high-resolution electron microscopy; this was done to assess the effect of the nanostructure on a possible “supermodulus effect.” The films are nanostructurally very similar to the superlattice films employed in previous studies at Northwestern in which a supermodulus effect was reported. But, contrary to previous studies, no anomalous behavior was observed for the measured elastic properties of the thin films. Therefore the present results negate the earlier results and cast a serious doubt on the existence of a supermodulus effect.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Huntington, H. B., in Solid State Physics, edited by Seitz, F. and Turnbull, D. (Academic Press, New York, 1958), Vol. 7, p. 213.Google Scholar
2.Tsakalakos, T. and Hilliard, J. E., J. Appl. Phys. 54, 734 (1983).CrossRefGoogle Scholar
3.Baral, D., Ketterson, J. B., and Hilliard, J. E., J. Appl. Phys. 57, 1076 (1985).CrossRefGoogle Scholar
4.Yang, W. M. C., Tsakalakos, T., and Hilliard, J. E., J. Appl. Phys. 48, 876 (1977).CrossRefGoogle Scholar
5.Henein, G. and Hilliard, J. E., J. Appl. Phys. 54, 728 (1983).CrossRefGoogle Scholar
6.Itozaki, H., Ph.D. Thesis, Northwestern University, 1982.Google Scholar
7.Mattson, J., Bahadra, R., Ketterson, J. B., Brodsky, M., and Grimsditch, M., J. Appl. Phys. 67, 2873 (1990).CrossRefGoogle Scholar
8.Moreau, A., Ketterson, J. B., and Mattson, J., Appl. Phys. Lett. 56, 1959 (1990).CrossRefGoogle Scholar
9.Moreau, A., Ketterson, J. B., and Davis, B. M., J. Appl. Phys. 68, 1622 (1990).CrossRefGoogle Scholar
10.Moreau, A., Ph.D. Thesis, Northwestern University, 1991.Google Scholar
11.Davis, B. M., Seidman, D. N., Moreau, A., Ketterson, J. B., Mattson, J., and Grimsditch, M., Phys. Rev. B 43, 9304 (1991).CrossRefGoogle Scholar
12.Baxter, C. S. and Stobbs, W. M., Ultramicroscopy 16, 213 (1985); C. S. Baxter and W. M. Stobbs, Nature 322, 814 (1986).CrossRefGoogle Scholar
13.Kuney, A., Grimsditch, M., Miyano, K., Banerjee, I., Falco, C. F., and Schuller, I. K., Phys. Rev. Lett. 48, 166 (1982).CrossRefGoogle Scholar
14.Khan, M. R., Chun, C. S., Felcher, G. P., Grimsditch, M., Kung, A., Falco, C. M., and Schuller, I. K., Phys. Rev. B 27, 7186 (1983).CrossRefGoogle Scholar
15.Bisanti, P. B., Brodsky, M. B., Felcher, G. P., Grimsditch, M., and Sill, L. R., Phys. Rev. B 35, 7813 (1987).CrossRefGoogle Scholar
16.Mintmire, J. W., Mater. Sci. Eng. A 126, 29 (1990).CrossRefGoogle Scholar
17.Mei, J. and Fernando, G. W., Phys. Rev. Lett. 66, 1882 (1991).CrossRefGoogle Scholar
18.Streitz, F. H., Sieradzki, K., and Cammarata, R. C., in Amorphous Silicon Technology—1991, edited by Madan, A., Nawakawa, Y., Thompson, M. J., Taylor, P. C., and LeComber, P. G. (Mater. Res. Soc. Symp. Proc. 219, Pittsburgh, PA, 1991), p. 340.Google Scholar
19.Karakostas, Th. and Flevaris, N. K., J. Mater. Sci. Lett. 5, 1235 (1986).CrossRefGoogle Scholar
20.Flevaris, N. K., Karakostas, Th., and Stoemenos, J., Phys. Status Solidi A 107, 579 (1988).CrossRefGoogle Scholar
21.Flevaris, N. K. and Karakostas, Th., J. Appl. Phys. 64,1228 (1988).CrossRefGoogle Scholar
22.Moreau, A., Ketterson, J. B., and Huang, J., Mater. Sci. Eng. A 126, 149 (1990).CrossRefGoogle Scholar
23.Sandercock, J. R., in Topics in Applied Physics, edited by Cardona, M. and Güntherodt, G. (Springer-Verlag, Berlin, 1982), Vol. 51, p. 173.Google Scholar
24.Grimsditch, M., in Topics in Applied Physics, edited by Cardona, M. and Güntherodt, G. (Springer-Verlag, Berlin, 1989), Vol. 66, p. 283.Google Scholar
25.Yang, H. Q., Wong, H. K., Zheng, J. Q., Ketterson, J. B., and Hilliard, J. E., J. Vac. Sci. Technol. A 2, 1 (1984).CrossRefGoogle Scholar
26.Wang, X. K., Yang, H. Q., Sheng, K. C., Davis, B. M., Chang, R. P. H., and Ketterson, J. B., J. Vac. Sci. Technol. A 7, 3208 (1989).CrossRefGoogle Scholar
27.Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978), p. 126.Google Scholar
28.Hart, E. W., Acta Metall. 15, 351 (1967).CrossRefGoogle Scholar
29.Davis, B. M., Ph.D. Thesis, Northwestern University, 1990.Google Scholar
30.de Fontaine, D., in Local Atomic Arrangements Studied by X-Ray Diffraction, edited by Cohen, J. B. and Hilliard, J. E. (Gordon and Breach, New York, 1966), p. 51.Google Scholar
31.Segmüller, A. and Blakeslee, A. E., J. Appl. Crystallogr. 6, 19 (1973).CrossRefGoogle Scholar
32.Cahn, J. W., Acta Metall. 10, 179 (1962).CrossRefGoogle Scholar
33.Baral, D., Hilliard, J. E., Ketterson, J. B., and Miyano, K., J. Appl. Phys. 53, 3552 (1982).CrossRefGoogle Scholar
34.Hill, R., Proc. Phys. Soc. (London) A 65, 349 (1952).CrossRefGoogle Scholar
35.Grimsditch, M. and Nizzoli, F., Phys. Rev. B 33, 5891 (1986).CrossRefGoogle Scholar
36.Kuney, A. W., Ph.D. Thesis, Northwestern University, 1984.Google Scholar
37.Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
38.Frank, F. C. and van der Merwe, J. H., Proc. R. Soc. London A 198, 216 (1949).Google Scholar
39.Kasper, E., Herzog, H. J., and Kibbel, H., Appl. Phys. 8,199 (1975).CrossRefGoogle Scholar
40.Matthews, J. W., in Epitaxial Growth, Part B, edited by Matthews, J. W. (Academic Press, New York, 1975), p. 559.CrossRefGoogle Scholar
41.Wu, T. B., J. Appl. Phys. 53, 5265 (1982).CrossRefGoogle Scholar
42.Pickett, W. E., J. Phys. F 12, 2195 (1982).CrossRefGoogle Scholar
43.Cai, J. H. and Xiong, S. J., Acta Phys. Sin. 32, 448 (1983).Google Scholar
44.Jankowski, A. F., J. Phys. F 18, 413 (1988).CrossRefGoogle Scholar
45.Wolf, D. and Lutsko, J. F., J. Mater. Res. 4, 1427 (1989).CrossRefGoogle Scholar
46.Henein, G., Ph.D. Thesis, Northwestern University, 1979.Google Scholar