Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T08:25:03.630Z Has data issue: false hasContentIssue false

Effects of ultrafine nanograins on the fracture toughness of nanocrystalline materials

Published online by Cambridge University Press:  18 July 2011

Yingguang Liu
Affiliation:
Department of Mechanical Engineering, Nanjing University of Technology, Nanjing 210009, Jiangsu, People’s Republic of China
Jianqiu Zhou*
Affiliation:
Department of Mechanical Engineering, Nanjing University of Technology, Nanjing 210009, Jiangsu, People’s Republic of China; and Department of Mechanical Engineering, Wuhan Institute of Technology, Wuhan 430070, Hubei, People’s Republic of China
Tongde Shen
Affiliation:
High-Tech Research Institute & State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, Jiangsu, People’s Republic of China
David Hui
Affiliation:
Department of Mechanical Engineering, University of New Orleans, New Orleans, Louisiana 70148
*
a)Address all correspondence to this author. e-mail: zhouj@njut.edu.cn
Get access

Abstract

For evaluating the effects of ultrafine nanograins (UFNGs) on the fracture toughness of conventional nanocrystalline (nc) materials, we developed a composite model composed of UFNGs (with a grain size d between 2 and 4 nm) evenly distributed in the conventional nc matrix (20 nm ≤ d ≤ 100 nm). The UFNGs could be treated as a part of triple junctions, denoted as super triple junctions. In the framework of our model, stress concentration near crack tip initiates intergrain sliding that leads to the generation of edge dislocations at super triple junctions. The dependence of critical crack intensity factors on grain size was calculated. It was demonstrated that the existence of the UFNGs approximately doubles the critical crack intensity factors.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).Google Scholar
2.Shen, T.D., Koch, C.C., Tsui, T.Y., and Pharr, G.M.: On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu-Ni alloys prepared by mechanical milling/alloying. J. Mater. Res. 10, 2892 (1995).Google Scholar
3.Kumar, K.S., Suresh, S., and Van Swygenhoven, H.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).Google Scholar
4.Koch, C.C.: Structural nanocrystalline materials: An overview. J. Mater. Sci. 42, 1403 (2007).CrossRefGoogle Scholar
5.Tomar, V. and Zhou, M.: Analyses of tensile deformation of nanocrystalline α-Fe2O3+fcc-Al composites using molecular dynamics simulations. J. Mech. Phys. Solids 55, 1053 (2007).Google Scholar
6.Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., and Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).CrossRefGoogle Scholar
7.Capolungo, L., Cherkaoui, M., and Qu, J.: On the elastic–viscoplastic behavior of nanocrystalline materials. Int. J. Plast. 23, 561 (2007).CrossRefGoogle Scholar
8.Liu, Y.G., Zhou, J.Q., and Ling, X.: Impact of grain size distribution on the multiscale mechanical behavior of nanocrystalline materials. Mater. Sci. Eng., A 527, 1719 (2010).Google Scholar
9.Jiang, B. and Weng, G.J.: A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials. J. Mech. Phys. Solids 52, 1125 (2004).Google Scholar
10.Ovid’ko, I.A.: Review on the fracture processes in nanocrystalline materials. J. Mater. Sci. 42, 1694 (2007).Google Scholar
11.Lu, L., Wang, L.B., Ding, B.Z., and Lu, K.: High-tensile ductility in nanocrystalline copper. J. Mater. Res. 15, 270 (2000).Google Scholar
12.Karimpoor, A.A., Erb, U., Aust, K.T., and Palumbo, G.: High strength nanocrystalline cobalt with high tensile ductility. Scr. Mater. 49, 651 (2003).Google Scholar
13.Valiev, R.Z., Alexandrov, I.V., Zhu, Y.T., and Lowe, T.C.: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5 (2002).Google Scholar
14.Youssef, K.M., Scattergood, R.O., Murty, K.L., and Koch, C.C.: Ultra tough nanocrystalline copper with a narrow grain size distribution. Appl. Phys. Lett. 85, 929 (2004).Google Scholar
15.McFadden, S.X., Mishra, R.S., Valiev, R.Z., Zhilyaev, A.P., and Mukherjee, A.K.: Low-temperature superplasticity in nanostructured nickel and metal alloy. Nature 398, 684 (1999).Google Scholar
16.Islamgaliev, R.K., Valiev, R.Z., Mishra, R.S., and Mukherjee, A.K.: Enhanced superplastic properties in bulk metastable nanostructured alloys. Mater. Sci. Eng., A 304, 206 (2001).Google Scholar
17.Mishra, R.S., Valiev, R.Z., McFadden, S.X., Islamgaliev, R.K., and Mukherjee, A.K.: High-strain-rate superplasticity from nanocrystalline Al alloy 1420 at low temperature. Philos. Mag. A 81, 37 (2001).CrossRefGoogle Scholar
18.Mishra, R.S., Stolyarov, V.V., Echer, C., Valiev, R.Z., and Mukherjee, A.K.: Mechanical behavior and superplasticity of a severe plastic deformation processed nanocrystalline Ti–6Al–4V alloy. Mater. Sci. Eng., A 289, 44 (2001).Google Scholar
19.Valiev, R.Z., Song, C., McFadden, S.X., Mukherjee, A.K., and Mishra, R.S.: TEM/HREM observations of nanostructure superplastic Ni3Al. Philos. Mag. A 81, 25 (2001).Google Scholar
20.Figueiredo, R.B., Kawasaki, M., and Langdon, T.G.: The mechanical properties of ultrafine-grained metals at elevated temperatures. Rev. Adv. Mater. Sci. 19, 1 (2009).Google Scholar
21.Yang, F. and Yang, W.: Crack growth versus blunting in nanocrystalline metals with extremely small grain size. J. Mech. Phys. Solids 57, 305 (2009).Google Scholar
22.Arsenlis, A. and Parks, D.M.: Modeling the evolution of crystallographic dislocation density in crystal plasticity. J. Mech. Phys. Solids 50, 1979 (2002).Google Scholar
23.Morozov, N.F., Ovid’ko, I.A., Sheinerman, A.G., and Aifantis, E.C.: Special rotational deformation as a toughening mechanism in nanocrystalline solids. J. Mech. Phys. Solids 58, 1088 (2010).Google Scholar
24.Cavaliere, P.: Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. Int. J. Fatigue 31, 1476 (2009).CrossRefGoogle Scholar
25.Ovid’ko, I.A. and Sheinerman, A.G.: Grain size effect on crack blunting in nanocrystalline materials. Scr. Mater. 60, 627 (2009).Google Scholar
26.Bobylev, S.V., Mukherjee, A.K., Ovid’ko, I.A., and Sheinerman, A.G.: Effects of intergrain sliding on crack growth in nanocrystalline materials. Int. J. Plast. 26, 1629 (2010).Google Scholar
27.Ovid’ko, I.A. and Sheinerman, A.G.: Ductile vs. brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials. Acta Mater. 58, 5286 (2010).Google Scholar
28.Ovid’ko, I.A. and Sheinerman, A.G.: Suppression of nanocrack generation in nanocrystalline materials under superplastic deformation. Acta Mater. 53, 1347 (2005).Google Scholar
29.Tvergaard, V. and Hutchinson, J.W.: The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J. Mech. Phys. Solids 40, 1377 (1992).Google Scholar
30.Wang, Y., Chen, M., Zhou, F., and Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).Google Scholar
31.Wang, Y.M., Ma, E., and Chen, M.W.: Enhanced tensile ductility in nanostructured Cu. Appl. Phys. Lett. 80, 2395 (2002).CrossRefGoogle Scholar
32.Han, B.Q., Huang, J.Y., Zhu, Y.T., and Lavernia, E.J.: Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys. Acta Mater. 54, 3015 (2006).Google Scholar
33.Thorvaldsen, A.: The intercept method—1. Evaluation of grain shape. Acta Mater. 45, 587 (1997).Google Scholar
34.Masumura, R.A., Hazzledine, P.M., and Pande, C.S.: Yield stress of fine grained materials. Acta Mater. 46, 4527 (1998).Google Scholar
35.Ter Heege, J.H., De Bresser, J.H.P., and Spiers, C.J.: Composite flow laws for crystalline materials with log-normally distributed grain size: Theory and application to olivine. J. Struct. Geol. 26, 1693 (2004).Google Scholar
36.Youssef, K.M., Scattergood, R.O., Murty, K.L., Horton, J.A., and Koch, C.C.: Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl. Phys. Lett. 87, 091904 (2005).Google Scholar
37.Niemana, G.W., Weertmana, J.R., and Siegela, R.W.: Mechanical behavior of nanocrystalline Cu and Pd. J. Mater. Res. 6, 1012 (1991).Google Scholar
38.Trelewicz, J.R. and Schuh, C.A.: The Hall–Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation. Acta Mater. 55, 5948 (2007).Google Scholar
39.Gleiter, H.: Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today? Acta Mater. 56, 5875 (2008).Google Scholar
40.Satta, A., Pisanu, E., Colombo, L., and Cleri, F.: Microstructure evolution at a triple junction in polycrystalline silicon. J. Phys. Condens. Matter. 14, 13003 (2002).Google Scholar
41.Fedorov, A.A., Gutkin, M.Y., and Ovid’ko, I.A.: Transformations of grain boundary dislocation pile-ups in nano- and polycrystalline materials. Acta Mater. 51, 887 (2003).Google Scholar
42.Ruano, O.A., Wadsworth, J., and Sherby, O.D.: Deformation of fine-grained alumina by grain boundary sliding accommodated by slip. Acta Mater. 51, 3617 (2003).Google Scholar
43.Mohamed, F.A.: Interpretation of nanoscale softening in terms of dislocation-accommodated boundary sliding. Metall. Mater. Trans. A 38, 340 (2007).Google Scholar
44.Bobylev, S.V., Mukherjee, A.K., and Ovid’ko, I.A.: Emission of partial dislocations from amorphous intergranular boundaries in deformed nanocrystalline ceramics. Scr. Mater. 60, 36 (2009).Google Scholar
45.Szlufarska, I., Nakano, A., and Vashista, P.: A crossover in the mechanical response of nanocrystalline ceramics. Science 309, 911 (2005).Google Scholar
46.Wang, Y., Li, J., Hamza, A.V., and Barbee, T.W.: Ductile crystalline-amorphous nanolaminates. Proc. Natl. Acad. Sci. U.S.A. 104, 11155 (2007).Google Scholar
47.Asaro, R.J., Krysl, P., and Kad, B.: Deformation mechanism transitions in nanoscale fcc metals. Philos. Mag. Lett. 83, 733 (2003).Google Scholar
48.Zhu, B., Asaro, R.J., Krysl, P., and Bailey, R.: Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals. Acta Mater. 53, 4825 (2005).Google Scholar
49.Irwin, R.G.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361 (1957).CrossRefGoogle Scholar
50.Zhang, T.Y. and Li, J.C.M.: Image forces and shielding effects of an edge dislocation near a finite length crack. Acta Metall. Mater. 39, 2739 (1991).Google Scholar
51.Li, H. and Ebrahimi, F.: Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals. Appl. Phys. Lett. 84, 4307 (2004).CrossRefGoogle Scholar
52.Li, H. and Ebrahimi, F.: Ductile-to-brittle transition in nanocrystalline metals. Adv. Mater. 17, 1969 (2005).Google Scholar
53.Ebrahimi, F., Liscano, A.J., Kong, D., Zhai, Q., and Li, H.: Fracture of bulk face centered cubic (FCC) metallic nanostructures. Rev. Adv. Mater. Sci. 13, 33 (2006).Google Scholar
54.Zhan, G.D., Kuntz, J.D., and Mukherjee, A.K.: Nanocrystalline-matrix ceramic composites for improved fracture toughness. MRS Bull. 29, 22 (2004).Google Scholar
55.Han, B.Q., Lavernia, E., and Mohamed, F.A.: Mechanical properties of nanostructured materials. Rev. Adv. Mater. Sci. 9, 1 (2005).Google Scholar