Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-23T04:43:35.905Z Has data issue: false hasContentIssue false

Effects of pore morphology on fatigue strength and fracture surface of lotus-type porous copper

Published online by Cambridge University Press:  03 March 2011

H. Seki
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
M. Tane*
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
M. Otsuka
Affiliation:
Shibaura Institute of Technology, Koto-ku, Tokyo 135-8548, Japan
H. Nakajima
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
*
a) Address all correspondence to this author. e-mail: mtane@sanken.osaka-u.ac.jp
Get access

Abstract

We studied the effect of anisotropic pore morphology on the fatigue behavior and fracture surface of lotus-type porous copper, which was fabricated through unidirectional solidification in pressurized hydrogen and argon atmospheres. The fatigue strength at finite life is closely related to the pore morphology. The fatigue strength decreases with increasing porosity, and the strength depends on applied-stress direction. The fatigue life is the longest in the direction parallel to the longitudinal axis of cylindrical pores. The fatigue strength at finite life is proportional to the ultimate tensile strength and can be expressed by a simple power-law formula. Anisotropic pores affect the fracture surface of lotus copper; crack-initiation site depends on applied-stress direction, and the anisotropic shape pores affect the direction of crack propagation and final fracture surface.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., and Wadley, H.N.G.: Metal Foams (Butterworth-Heineman Press/Elsevier Science, Burlington, MA, 2000).Google Scholar
2Banhart, J.: Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559 (2001).CrossRefGoogle Scholar
3Ashby, M.F.: The mechanical-properties of cellular solids. Metall. Mater. Trans. A 14, 1755 (1983).CrossRefGoogle Scholar
4Gibson, L.J. and Ashby, M.F.: Cellular Solids 2nd ed. (Cambridge University Press, U.K., 1997).Google Scholar
5Nakajima, H., Hyun, S.K., Ohashi, K., Ota, K., and Murakami, K.: Fabrication of porous copper by unidirectional solidification under hydrogen and its properties. Colloids Surf., A 179, 209 (2001).Google Scholar
6Nakajima, H., Ikeda, T., and Hyun, S.K.: Fabrication of lotus-type porous metals and their physical properties. Adv. Eng. Mater. 6, 377 (2004).CrossRefGoogle Scholar
7Hyun, S.K. and Nakajima, H.: Anisotropic compressive properties of porous copper produced by unidirectional solidification. Mater. Sci. Eng. A340, 258 (2003).CrossRefGoogle Scholar
8Tane, M., Ichitsubo, T., Hyun, S.K., and Nakajima, H.: Anisotropic yield behavior of lotus-type porous iron: Measurements and micromechanical mean-field analysis. J. Mater. Res. 20, 135 (2005).Google Scholar
9Tane, M., Ichitsubo, T., Nakajima, H., Hyun, S.K., and Hirao, M.: Elastic properties of lotus-type porous iron: Acoustic measurement and extended effective-mean-field theory. Acta Mater. 52, 5195 (2004).Google Scholar
10Sugimura, Y., Meyer, J., He, M.Y., Bart-Smith, H., Grenstedt, J., and Evans, A.G.: On the mechanical performance of closed cell Al alloy foams. Acta Mater. 45, 5245 (1997).CrossRefGoogle Scholar
11Zhou, J. and Soboyejo, W.O.: Compression-compression fatigue of open cell aluminum foams: macro-/micro- mechanisms and the effects of heat treatment. Mater. Sci. Eng. A369, 23 (2004).CrossRefGoogle Scholar
12Olurin, O.B., McCullough, K.Y.G., Fleck, N.A., and Ashby, M.F.: Fatigue-crack propagation in aluminium alloy foams. Int. J. Fatigue 23, 375 (2001).CrossRefGoogle Scholar
13Harte, A-M., Fleck, N.A., and Ashby, M.F.: Fatigue failure of an open cell and a closed cell aluminium alloy foam. Acta Mater. 47, 2511 (1999).CrossRefGoogle Scholar
14Sugimura, Y., Rabiei, A., Evans, A.G., Harte, A.M., and Fleck, N.A.: Compression fatigue of a cellular Al alloy. Mater. Sci. Eng. A269, 38 (1999).CrossRefGoogle Scholar
15Seki, H., Yamazaki, S., Otsuka, M., Tane, M., Hyun, S.K., and Nakajima, H.: Effect of porosity on fatigue strength of lotus-type porous copper. Mater. Sci. Forum 510, 966 (2006).CrossRefGoogle Scholar
16Hyun, S.K. and Nakajima, H.: Effect of solidification velocity on pore morphology of lotus-type porous metals fabricated by unidirectional solidification. Mater. Lett. 57, 3149 (2003).Google Scholar
17Ichitsubo, T., Tane, M., Ogi, H., Hirao, M., Ikeda, T., and Nakajima, H.: Anisotropic elastic constants of lotus-type porous copper: Measurements and micromechanics modeling. Acta Mater. 50, 4105 (2002).Google Scholar
18Onishi, H., Hyun, S.K., and Nakajima, H.: Measurement of pore length of lotus-type porous nickel, inPorous Metals and Metal Foaming Technology, edited by Nakajima, H. and Kanetake, N. (The Japan Institute of Metals, Sendai, Japan, 2006), p. 423.Google Scholar
19Suresh, S.: Fatigue of Materials 2nd ed. (Cambridge University Press, UK, 1998).CrossRefGoogle Scholar
20Hyun, S.K., Murakami, K., and Nakajima, H.: Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification. Mater. Sci. Eng. A299, 241 (2001).CrossRefGoogle Scholar
21Gerber, T.L. and Fuchs, H.O.: Analysis of non-propagating cracks in notched parts with compressive mean stress. J. Mater. 3, 359 (1968).Google Scholar