Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-22T22:23:50.244Z Has data issue: false hasContentIssue false

Effects of milling and Ag doping on the fabrication of LaBa2Cu3Oy superconductor

Published online by Cambridge University Press:  03 March 2011

Tsang-Tse Fang
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan, Republic of China
Jao-Wei Huang
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan, Republic of China
Ma-Shine Wu
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan, Republic of China
Get access

Abstract

The effects of milling and Ag addition on the decomposition of single-phase LaBa2Cu3Oy have been evaluated. It was found that the decomposition of milled single-phase LaBa2Cu3Oy powders when sintered in pure N2 is attributed to the introduction of strain in the lattice which causes the instability of the structure. The possible reasons why single-phase LaBa2Cu3Oy could be synthesized by sintering in pure N2 at high temperatures and its transition width is always broadened are proposed. The decomposition of compacts of unmilled powders of single-phase LaBa2Cu3Oy when sintered in pure N2 for a long time is due to the fact that oxygen diffuses along the grain boundaries and evolves through the surface of the specimens. Silver might segregate to the grain boundaries and prevent decomposition. It is suggested that to obtain a high-quality LaBa2Cu3Oy, sintering in the reduced atmosphere to achieve a proper oxygen content is required. Reduced atmosphere and Ag addition could enhance the densification rate. For Ag-doped specimens, Tc is highest for x = 0.0001, but decreases for x > 0.0001.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
2Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1184 (1989).CrossRefGoogle Scholar
3Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R. B., Davis, M. E., Kammlott, G. W., and Fastnacht, R. A., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
4Ward, P. J., Button, T. W., Rand, B., Sharp, J. H., and Messer, P. F., Brit. Ceram. Proc. 41, 289 (1988).Google Scholar
5Kuwabara, M., Shimooka, H., Katayama, I., and Inada, T., J. Mater. Res. 6, 1398 (1991).CrossRefGoogle Scholar
6Song, Y., Golben, J. P., Chittipeddi, S., Gaines, J. R., and Epstein, A. J., Phys. Rev. B 38, 4605 (1988).CrossRefGoogle Scholar
7Lee, S. I., Golben, J. P., Lee, S. Y., Chen, X. D., Song, Y., Noh, T. W., McMichael, R. D., Gaines, J. R., Cox, D. L., and Patton, B. R., Phys. Rev. B 36, 2417 (1987).CrossRefGoogle Scholar
8Akinaga, H., Takita, K., Asano, H., and Masuda, K., Physica C 161, 581 (1989).CrossRefGoogle Scholar
9Hikita, M., Tsurumi, S., Semba, K., Iwata, T., and Kurihara, S., Jpn. J. Appl. Phys. 26, L615 (1987).CrossRefGoogle Scholar
10Yoshizaki, R., Sawada, H., Iwazumi, T., Saito, Y., Abe, Y., Ikeda, H., Imai, K., and Nakai, I., Jpn. J. Appl. Phys. 26, L1703 1987).CrossRefGoogle Scholar
11Wada, T., Suzuki, N., Yamauchi, H., Tanaka, S., Maeda, A., and Uchinakura, K., J. Am. Ceram. Soc. 72, 2000 (1989).CrossRefGoogle Scholar
12Wada, T., Suzuki, N., Maeda, A., Yabe, T., Uchinakura, K., Uchida, S. I., and Tanaka, S., Phys. Rev. B 39, 9126 (1989).CrossRefGoogle Scholar
13Ghandehari, M. H. and Brass, S. G., J. Mater. Res. 4, 1111 (1989).CrossRefGoogle Scholar
14Brass, S. G. and Ghandehari, M. H., Appl. Phys. Lett. 53, 2235 (1988).CrossRefGoogle Scholar
15Tanasoiu, C., Nicolau, P., and Miclea, C., IEEE Trans. Mag. 12, 980 (1976).CrossRefGoogle Scholar
16Haneda, K. and Kojima, H., J. Am. Ceram. Soc. 57, 68 (1973).CrossRefGoogle Scholar
17Fang, T. T. and Huang, J. B., J. Am. Ceram. Soc. 75, 915 (1992).CrossRefGoogle Scholar
18Ganapathi, L., Kumar, A., and Narayan, J., Physica C 167, 669 (1990).CrossRefGoogle Scholar
19Chandrachood, M. R., Mulla, I. S., Gorwadkar, S. M., and Sinha, A. P. B., Appl. Phys. Lett. 56, 183 (1990).CrossRefGoogle Scholar
20Fueki, K., Idemoto, Y., and Ishizuka, H., Physica C 166, 261 (1990).CrossRefGoogle Scholar
21Tarascon, J. M., Miceli, P. F., Greene, L. H., and Hull, G. W., Phys. Rev. B 37, 7458 (1988).CrossRefGoogle Scholar
22Xu, Y., Sabatini, R. L., Moodenbaugh, A. R., Zhu, Y., Suenaga, M., Dennis, K. W., and Mc, R. W.Callum, Physica C 169, 205 (1990).CrossRefGoogle Scholar
23Lin, J. J., Chen, T. M., and Chen, Y. F., Solid State Commun. 76, 1285 (1990).CrossRefGoogle Scholar
24Nishi, Y., Moriya, S., and Tokunaga, S., J. Mater. Sci. Lett. 7, 596 (1988).CrossRefGoogle Scholar
25Michael, S. S. and Mukhlif, N. A., Mater. Res. Bull. XXIII, 1797 (1988).CrossRefGoogle Scholar
26Singh, J. P., Leu, H. J., Poeppel, R. B., Voorhees, E. V., Goudey, G. T., Winsley, K., and Shi, D., J. Appl. Phys. 66, 3154 (1989).CrossRefGoogle Scholar
27Yeh, F. and White, K. W., J. Appl. Phys. 70, 4989 (1991).CrossRefGoogle Scholar
28Singh, J. P., Shi, D., and Capone, D. W., Appl. Phys. Lett. 53, 237 (1988).CrossRefGoogle Scholar
29Coble, R. L. and Burke, J. E., Progress in Ceramic Science, edited by Burke, J.E. (The Macmillan Co., New York, 1963), Vol. 3, pp. 197251.Google Scholar
30Hsieh, H. L. and Fang, T. T., J. Am. Ceram. Soc. 72, 142 (1989).CrossRefGoogle Scholar
31Brown, I. D., J. Solid State Chem. 82, 122 (1989).CrossRefGoogle Scholar
32Chen, N., Shi, D., and Goretta, K. C., J. Appl. Phys. 66, 2485 (1989).CrossRefGoogle Scholar
33Joo, J., Singh, J. P., Poeppel, R. B., Gangopadhyay, A. K., and Mason, T. O., J. Appl. Phys. 71, 2351 (1991).CrossRefGoogle Scholar
34Cahen, D., Moisi, Z., and Schwartz, M., Mater. Res. Bull. XXII, 1581 (1987).CrossRefGoogle Scholar