Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-23T15:27:29.021Z Has data issue: false hasContentIssue false

Effects of aging conditions on the structural properties of mesoporous SiO2/TiO2 composite materials with crystallized framework

Published online by Cambridge University Press:  01 February 2006

Hua Li
Affiliation:
State Key Laboratory of High Performance Ceramic and Superfine Microstructure, Shanghai Institute of Ceramic, Chinese Academy of Science, Shanghai 200050, People’s Republic of China
Wei-hua Shen
Affiliation:
State Key Laboratory of High Performance Ceramic and Superfine Microstructure, Shanghai Institute of Ceramic, Chinese Academy of Science, Shanghai 200050, People’s Republic of China
Jian-lin Shi*
Affiliation:
State Key Laboratory of High Performance Ceramic and Superfine Microstructure, Shanghai Institute of Ceramic, Chinese Academy of Science, Shanghai 200050, People’s Republic of China
Liang-ming Xiong
Affiliation:
State Key Laboratory of High Performance Ceramic and Superfine Microstructure, Shanghai Institute of Ceramic, Chinese Academy of Science, Shanghai 200050, People’s Republic of China
Jian Liang
Affiliation:
State Key Laboratory of High Performance Ceramic and Superfine Microstructure, Shanghai Institute of Ceramic, Chinese Academy of Science, Shanghai 200050, People’s Republic of China
Meilin Ruan
Affiliation:
State Key Laboratory of High Performance Ceramic and Superfine Microstructure, Shanghai Institute of Ceramic, Chinese Academy of Science, Shanghai 200050, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: jlshi@sunm.shcnc.ac.cn
Get access

Abstract

Well-organized mesoporous SiO2/TiO2 materials with crystallized framework were synthesized. The resultant materials showed high surface area (180–300 m2/g), narrow pore-size distribution (3.5–6 nm), and nanocrystalline framework. The influences of aging conditions on the mesoporous 80TiO2–20SiO2 materials were investigated. The water in the initial solution is beneficial for the mesostructural organization of the as-prepared sample while air moisture (relative humidity) during the aging process plays a key role in the crystallization of the calcined sample. Low aging temperature is another decisive factor to the formation of the mesostructure.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gopel, W.: Ultimate limits in the miniaturization of chemical sensors. Sens. Actuators 56, 83 (1996).CrossRefGoogle Scholar
2.Kato, K., Tsuzuki, A., Torii, Y. and Taoda, H.: Morphology of thin anatase coatings prepared form alkoxide solutions containing organic polymer affecting the photocatalytic decomposition of aqueous acetic acid. J. Mater. Sci. 30, 837 (1995).CrossRefGoogle Scholar
3.Hermann, J-M.: Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115 (1999).CrossRefGoogle Scholar
4.Gratzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).CrossRefGoogle ScholarPubMed
5.On, D. Trong: A simple route for the synthesis of mesostructured lamellar and hexagonal phosphorus-free titania (TiO2). Langmuir 15, 8561 (1999).CrossRefGoogle Scholar
6.Choi, S.Y., Mamak, M., Coombs, N., Chopra, N. and Ozin, G.A.: Thermally stable two-dimensional hexagonal mesoporous nanocrystalline anatase, meso-nc-TiO2: Bulk and crack-free thin film morphologies. Adv. Funct. Mater. 14, 335 (2004).CrossRefGoogle Scholar
7.Livage, J., Henry, M. and Sanchez, C.: Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 18, 259 (1988).CrossRefGoogle Scholar
8.Yang, P., Zhao, D., Margolese, D.I., Chmelka, B.F. and Stucky, G.D.: Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152 (1998).CrossRefGoogle Scholar
9.Yang, P., Zhao, D., Margolese, D.I., Chmelka, B.F. and Stucky, G.D.: Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 11, 2813 (1999).CrossRefGoogle Scholar
10.Bagshaw, S.A. and Pinnavaia, T.J.: Mesoporous alumina molecular sieves. Angew. Chem. Int. Ed. Engl. 35, 1102 (1996).CrossRefGoogle Scholar
11.Brinker, C.J., Lu, Y., Sellinger, A. and Fan, H.: Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 11, 579 (1999).3.0.CO;2-R>CrossRefGoogle Scholar
12.Crepaldi, E.L., Soler-Illia, D.G.J.A., Cagnol, F., Ribot, F. and Sanchez, C.: Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO2. J. Am. Chem. Soc. 125, 9770 (2003).CrossRefGoogle ScholarPubMed
13.Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissortel, F., Salbeck, J., Spreitzer, H. and Gratzel, M.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high proton-to-electron conversion efficiencies. Nature 395, 583 (1998).CrossRefGoogle Scholar
14.Patarin, J., Lebeau, B. and Zana, R.: Recent advances in the formation mechanisms of organized mesoporous materials. Curr. Opin. Colloid Interface Sci. 7, 107 (2002).CrossRefGoogle Scholar
15.Yang, P., Zhao, D., Margolese, D.I., Chmelka, B.F. and Stucky, G.D.: Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 11, 2813 (1999).CrossRefGoogle Scholar
16.Sayari, A. and Liu, P.: Non-silica periodic mesostructured materials: Recent progress. Microporous Mater. 12, 149 (1997).CrossRefGoogle Scholar
17.Crepaldi, E.L., Soler-Illia, G.J.D.A., Grosso, D. and Sanchez, C.: Nanocrystallise titania and zirconia mesoporous thin films exhibiting enhanced thermal stability. N. J. Chem. 27, 9 (2003).CrossRefGoogle Scholar
18.Yun, H.S., Miyazawa, C., Honma, I., Zhou, H. and Kuwabara, M.: Synthesis of semicrystallized mesoporous TiO2 thin films using triblock copolymer templates. Mater. Sci. Eng. C 23, 487 (2003).CrossRefGoogle Scholar
19.Smarsly, B., Grosso, D., Brezesinski, T., Pinna, N., Boissere, C., Antonietti, M. and Sanchez, C.: Highly crystalline cubic mesoporous TiO2 with 10-nm pore diameter made with a new block copolymer template. Chem. Mater. 16, 2948 (2004).CrossRefGoogle Scholar
20.Antonelli, D.M.: Synthesis of phosphorus-free mesoporous titania via templating with amine surfactants. Micoporous Mesoporous Mater. 30, 315 (1999).CrossRefGoogle Scholar
21.Calleja, G., Serrano, D.P., Pizarro, R.S.P. and Garcia, A.: Study on the synthesis of high-surface-area mesoporous TiO2 in the presence of nonionic surfactants. Ind. Eng. Chem. Res. 43, 2485 (2004).CrossRefGoogle Scholar
22.Tatsumi Synthesis of large-pore Ia3d mesoporous silica and its tubelike carbon replica. Angew. Chem. Int. Ed. Engl. 3930, 42 (2003).Google Scholar
23.Kruk, M. and Jaroniec, M.: Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 3169, 13 (2001).Google Scholar
24.Soler-illia, G.J.D.A., Louis, A. and Sanchez, C.: Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly. Chem. Mater. 14, 750 (2002).CrossRefGoogle Scholar
25.Banford, C.H. and Tipper, C.F.: Comprehensive Chemical Kinetics, Vol. 22, (Elsevier, New York, 1980), p. 41.Google Scholar
26.Li, X.S., Fryxell, G.E., Birnbaum, J.C. and Wang, C.: Effects of template and precursor chemistry on structure and properties of mesoporous TiO2 thin films. Langmuir 20, 9095 (2004).CrossRefGoogle ScholarPubMed
27.Choi, S.Y., Mamak, M., Speakman, S., Chopra, N. and Ozin, G.A.: Evolution of nanocrystallinity in periodic mesoporous anatase thin films. Small 1, 226 (2005).CrossRefGoogle ScholarPubMed