Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T05:50:47.726Z Has data issue: false hasContentIssue false

Effect of Ti Substitution on the Microstructure and Properties of Zr–Mn–V–Ni AB2 Type Hydride Electrode Alloys

Published online by Cambridge University Press:  31 January 2011

Xueyan Song
Affiliation:
Department of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China and Beijing Laboratory of Electron Microscopy, Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 2724, 100080, Beijing, China
Ze Zhang
Affiliation:
Beijing Laboratory of Electron Microscopy, Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 2724, 100080, Beijing, China
Xiaobin Zhang
Affiliation:
Department of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
Yongquan Lei
Affiliation:
Department of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
Qidong Wang
Affiliation:
Department of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
Get access

Abstract

The electrochemical capacity, hydrogen absorbed/desorbed activation properties of alloy Zr(Mn0.1V0.3Ni0.6)2 were improved after Ti substitution for the Zr. The microstructure of Zr1xTix (Mn0.1V0.3Ni0.6)2 (x = 0, 0.5) alloys was analyzed by x-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive spectrum (EDS) analysis. A systematic structural analysis shows that there are two phases in the Ti-substituted alloy of Zr0.5Ti0.5(Mn0.1V0.3Ni0.6)2: C14 Laves phase and Ti-containing “premartensite” R phase of Ti0.8Zr0.2Ni. The improvement of electrochemical properties of alloy Zr(Mn0.1V0.3Ni0.6)2 after Ti substitution can be attributed to the Ti substitution for Zr sites in C14 Laves phase, the formation of Ti0.8Zr0.2Ni R-phase, and disappearance of Zr–Ni binaries.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Van, M. H. J. Rijswick, Hydrides for Energy Storage (Proc. Int. Symp., Gelio, Norway, August, 1977), Vol. 2, p. 14.Google Scholar
2.Ovshinsky, S. R., Fetcenko, M. A., and Ross, J., Science 260, 9 (1993).CrossRefGoogle Scholar
3.Yoshida, M. and Akiba, E., J. Alloys Comp. 224, 121 (1995).CrossRefGoogle Scholar
4.Joubert, J. M., Latroche, M., Percheron-Guegan, A., and Bovet, J., J. Alloys Comp. 240, 219 (1996).CrossRefGoogle Scholar
5.Brandes, E.A. and Brook, G. B., Smithells Metal Reference Book (Butterworth-Heinemamn, Oxford, 1992).Google Scholar
6.Huot, J., Akiba, E., Ogura, T., and Ishido, Y., J. Alloys Comp. 218, 101 (1995).CrossRefGoogle Scholar
7.Hout, J., Akiba, E., and Ishido, Y., J. Alloys Comp. 231, 85 (1995).CrossRefGoogle Scholar
8.Ronnerbr, E., Noreus, D., Sakai, T., and Tsukahara, M., J. Alloys Comp. 231, 90 (1995).CrossRefGoogle Scholar
9.Wu, S.K. and Wayman, C.M., Acta Metall. 37, 2805 (1989).CrossRefGoogle Scholar
10.Miyazaki, S. and Wayman, C. M., Acta Metall. 36, 181 (1988).CrossRefGoogle Scholar
11.Nishida, M., Wayman, C. M., and Honma, T., Metall. Trans. 17A, 1505 (1986).CrossRefGoogle Scholar
12.Sandrock, G. D., Perkins, A. J., and Henemann, R. F., Metall. Trans. 2, 2761 (1971).CrossRefGoogle Scholar
13.Chandra, K. and Purdy, G. P., J. Appl. Phys. 39, 2176 (1968).CrossRefGoogle Scholar
14.Salamon, M.B., Meichle, M. E., and Wayman, C.M., Phys. Rev. B 31, 7306 (1985).CrossRefGoogle Scholar
15.Hwang, C.M., Meichle, M., Salamon, M.B., and Wayman, C.M., Philos. Mag. 47A, 9 (1983).CrossRefGoogle Scholar
16.Beiley, J. E., Acta Metall. 11, 267 (1963).CrossRefGoogle Scholar
17.De Veirman, A. E., Staals, A. A., and Notten, P. H., Philos. Mag. A 70, 837 (1994).CrossRefGoogle Scholar
18.Mccormock, M., Badding, M.E., Vyas, B., Iaharak, S.M., and Murphy, D.W., J. Electrochem. Soc. 143, 131 (1996).Google Scholar
19.Wakao, S., Sawa, H., Nakano, H., Chubachi, S., and Abe, M., J. Less-Common Metals 131, 311 (1987).CrossRefGoogle Scholar
20.Fruchart, D., Soubeyroux, J. L., Miraglia, S., and Obbade, S., Z. Phys. Chemie 179, 225 (1994).CrossRefGoogle Scholar
21.Joubert, J. M., Latroche, M., and Percheron-Guegan, A., J. Alloys Comp. 231, 494 (1995).CrossRefGoogle Scholar