Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T05:11:19.654Z Has data issue: false hasContentIssue false

Effect of the direction of field annealing on the stress + field induced magnetic anisotropy in Co–Fe–Ni amorphous alloys

Published online by Cambridge University Press:  31 January 2011

J. González
Affiliation:
Dpto de Física de Materiales, Facultad de Ciencias Químicas, Universidad del Pais Vasco, B. de Ibaeta s/n, 20009 San Sebastián, Spain
J.M. Blanco
Affiliation:
Dpto de Física de Materiales, Facultad de Ciencias Químicas, Universidad del Pais Vasco, B. de Ibaeta s/n, 20009 San Sebastián, Spain
Get access

Abstract

Compositional dependence of the stress + longitudinal field induced magnetic anisotropy (SLFA) in (Co1−xFex)75Si15B10 (0 ⋚ x ⋚ 1), (Co1−xNix)75Si15B10 (x = 0.22) and [Co1−x(Fe0.5Ni0.5)x]75Si15B10 (x = 0.20, 0.50, and 0.80) amorphous alloy ribbons has been studied. The magnetic field was applied parallel to the ribbon axis. Two mechanisms have been invoked in order to explain the microscopic origin of this anisotropy: the directional ordering of atomic pairs, and the tetrahedral holes like 3Co–1Fe and 1Co–3Fe. The last contribution is found to be similar both in its direction and its value with respect to that obtained for stress + transverse field induced anisotropy (STFA) in the same compositions containing Fe, while in the Co–Ni samples only the first contribution is responsible for the SLFA, depending on its direction for the field annealing.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Vázquez, M., Ascasibar, E., Hernando, A., and Nielsen, O. V., J. Magn. Magn. Mat. 66, 37 (1987).CrossRefGoogle Scholar
2.Abrasimova, G. E., Novakhtskaya, N. I., and Serebryakov, A. V., Phys. Status Solidi (a) 113, 187 (1990).Google Scholar
3.González, J. and Kulakowski, K., J. Magn. Magn. Mat. 82, 94 (1989)CrossRefGoogle Scholar
4.González, J., J. Magn. Magn. Mat. 87, 111 (1990).Google Scholar
5.González, J. and Blanco, J. M., J. Non-Cryst. Solids 126, 151 (1990).CrossRefGoogle Scholar
6.Blanco, J. M., Barbón, P. G., Pierna, A. R., and González, J., J. Non-Cryst. Solids 136, 91 (1991).CrossRefGoogle Scholar
7.Vázquez, M., González, J., and Hernando, A., J. Magn. Magn. Mat. 53, 323 (1986).CrossRefGoogle Scholar
8.Yavari, A. R., Barrue, R., Harmelin, M., and Perron, J. C., J. Magn. Magn. Mat. 69, 43 (1987).CrossRefGoogle Scholar
9.Zaluska, A. and Matyja, H., Int. J. Rapid Solid. 2, 205 (1986).Google Scholar
10.Nielsen, O. V., Hansen, L. K., Hernando, A., and Madurga, V., J. Magn. Magn. Mat. 36, 73 (1983).CrossRefGoogle Scholar
11.Nielsen, O. V., Barandiarán, J. M., Hernando, A., and Madurga, V., J. Magn. Magn. Mat. 49, 125 (1985).CrossRefGoogle Scholar