Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-08T05:29:38.692Z Has data issue: false hasContentIssue false

Effect of Temperature and Vapor-phase Encapsulation on Particle Growth and Morphology

Published online by Cambridge University Press:  31 January 2011

Sheryl H. Ehrman*
Affiliation:
Chemical Science and Technology Laboratory, Building 221, Room B312, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Maria I. Aquino-Class
Affiliation:
Chemical Science and Technology Laboratory, Building 221, Room B312, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Michael R. Zachariah
Affiliation:
Chemical Science and Technology Laboratory, Building 221, Room B312, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
*
a)Address all correspondence to this author. e-mail: ehrman@psi.ch
Get access

Abstract

The effect of in situ vapor phase salt-encapsulation on particle size and morphology was systematically investigated in a sodium co-flow/furnace reactor. The temperature of the furnace was varied, and the primary particle size and degree of agglomeration of the resulting silicon and germanium particles were determined from transmission electron micrograph images of particles sampled in situ. Particle size increased with increasing temperature, a trend expected from our understanding of particle formation in a high-temperature process in the absence of an encapsulant. Germanium, which coalesces faster than silicon, formed larger particles than silicon at the same temperatures, also in agreement with observations of particle growth in more traditional aerosol processes. At the highest temperatures, unagglomerated particles were formed, while at low temperatures, agglomerated particles were formed, with agglomerate shape following the shape of the salt coating.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ulrich, G. D., Chemical and Engineering News, August 6 (1984).Google Scholar
2.Axelbaum, R. L., DuFaux, J., Frey, C. A., Kelton, K. F., Lawton, S. A., Rosen, L. J., and Sastry, S. M. L., J. Mater. Res. 11, 948 (1996).CrossRefGoogle Scholar
3.DuFaux, D.P. and Axelbaum, R.L., Comb. Flame 100, 350 (1995).CrossRefGoogle Scholar
4.Steffens, K. L., Zachariah, M. R., DuFaux, D. P., and Axelbaum, R. L., Chem. Mater. 8, 1871 (1996).CrossRefGoogle Scholar
5.Calcote, H. F. and Felder, W., Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1992), pp. 18691876.Google Scholar
6.Glassman, I., Davis, K. A., and Brezinski, K., Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1992), pp. 18771882.Google Scholar
7.Gorshkov, N., Aquino, M.L., Shull, R. D., Shapiro, A., and Zachariah, M. R., Nanostruct. Mater. (1997).Google Scholar
8.Ulrich, G. D. and Subramanian, N. S., Combustion Sci. Technol. 17, 119 (1977).CrossRefGoogle Scholar
9.Helble, J. J. and Sarofim, A. F., J. Colloid Interface Sci. 128, 348 (1989).CrossRefGoogle Scholar
10.Koch, W. and Friedlander, S. K., J. Colloid Interface Sci. 140, 419 (1991).CrossRefGoogle Scholar
11.Lehtinen, K.E. J., Windeler, R. S., and Friedlander, S. K., J. Aerosol Sci. 27, 883 (1996).CrossRefGoogle Scholar
12.Ulrich, G.D., Combust. Sci. Technol. 4, 47 (1971).CrossRefGoogle Scholar
13.Zachariah, M.R. and Semerjian, H. G., High Temp. Sci. 28, 113 (1990).Google Scholar
14.Akhtar, M.K., Xiong, Y., and Pratsinis, S. E., AIChE J. 37, 1561 (1991).CrossRefGoogle Scholar
15.Wu, M.K., Windeler, R. S., Steiner, C. K. R., Boers, T., and Friedlander, S. K., Aerosol Sci. Technol. 19, 527 (1993).CrossRefGoogle Scholar
16.Windeler, R.S., Lehtinen, K. E. J., and Friedlander, S. K., Aerosol Sci. Technol. (1997).Google Scholar
17.Xiong, Y., Akhtar, M.K., and Pratsinis, S.E., J. Aerosol Sci. 24, 301 (1993).CrossRefGoogle Scholar
18.Friedlander, S.K. and Wu, M. K., Phys. Rev. B 49, 3622 (1994).CrossRefGoogle Scholar
19.Zachariah, M.R. and Carrier, M.C., Science (1997).Google Scholar
20.Lunden, M.M., Ph.D. Thesis, Department of Chemical Engineering, California Institute of Technology (1995).Google Scholar
21.Robertson, W. M., J. Am. Ceram. Soc. 64, 9 (1981).CrossRefGoogle Scholar
22.Smithells, C.J., Smithells Metals Reference Book, edited by Brandes, E. A. and Brook, G. B., 7th ed. (Butterworth-Heinemann Ltd., 1992).Google Scholar
23.Frenkel, J., J. Phys. 9, 385 (1945).Google Scholar
24.Korunski, A.M. and Bondareva, A.G., Russian J. Phys. Chem. 47, 1552 (1973).Google Scholar
25.Zachariah, M.R. and Tsang, W., Aerosol Sci. Technol. 19, 499 (1993).CrossRefGoogle Scholar
26.Hinds, W. C., Aerosol Technology (Wiley-Interscience, New York, 1982).Google Scholar
27.Cerdiera, F., Dreybrodt, W., and Cardona, M., Solid State Commun. 10, 591 (1972).CrossRefGoogle Scholar
28.Forrest, S.R. and Whitten, T.A. Jr, J. Phys. A: Math. Gen. 12, 109 (1979).CrossRefGoogle Scholar
29.Sampson, R.J., Mulholland, G. W., and Gentry, J. W., Langmuir 3, 272 (1987).CrossRefGoogle Scholar
30.Schaefer, D.W. and Hurd, A.J., Aerosol Sci. Technol. 12, 876 (1990).CrossRefGoogle Scholar