Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-30T10:54:39.008Z Has data issue: false hasContentIssue false

Effect of surfactant on casting metalorganic films and writing copper metal patterns

Published online by Cambridge University Press:  31 January 2011

C.T. Lin*
Affiliation:
Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115–2862
H.Y. Lee
Affiliation:
Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115–2862
M.A. Souto
Affiliation:
Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115–2862
*
a)Address correspondence to this author.
Get access

Abstract

A highly effective wetting agent and emulsifier, Triton X-100 detergent is introduced to metalorganic solutions. When applied to a substrate, this detergent/metalorganic solution promotes the formation of a uniform spin-on thin film with good adhesion. The precursor, copper formate film, was spin-deposited with a metalorganic solution prepared by a solvent mixture of methanol and Triton X-100 (50:1 by volume). KrF laser (248 nm) direct writing of high-purity copper patterns on glass and polyimide substrates has been achieved. When the laser beam is imaged through a slit device, periodic copper metal structures with a linewidth of ∼2.5 μm are observed, which may be attributed to result from Fraunhofer diffraction. A general process for casting homogeneous amorphous films on substrates from a solution of molecular or ionic metalorganics dissolved in the neutral or charged micelles is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Mantese, J. V., Micheli, A. L., Hamdi, A. H., and Vest, R. W., MRS Bulletin, October, 48 (1989).Google Scholar
2Beeson, K. W. and Clements, N. S., Appl. Phys. Lett. 53, 547 (1988).Google Scholar
3Fisanick, G. J., Hopkins, J. B., Gross, M. E., Fennell, M. D., and Schnoes, K. J., Appl. Phys. Lett. 46, 1184 (1985).CrossRefGoogle Scholar
4Gross, M. E., Appelbaum, A., and Schnoes, K. J., J. Appl. Phys. 60, 529 (1986).Google Scholar
5Gupta, A. and Jagannathan, R., Appl. Phys. Lett. 51, 2254 (1987).Google Scholar
6Furcone, S. F. and Chiang, Y. M., Appl. Phys. Lett. 52, 2180 (1988).Google Scholar
7Gross, M. E., Appelbaum, A., and Gallagher, P. K., J. Appl. Phys. 61, 1628 (1987).Google Scholar
8Theuerer, H. C., Nesbitt, E. A., and Bacon, D. D., J. Appl. Phys. 40, 2994 (1969).CrossRefGoogle Scholar
9Fackler, J. P., Cotton, F. A., and Barnum, D. W., Inorg. Chem. 2, 97 (1963).CrossRefGoogle Scholar
10Gafney, H. D. and Lintvedt, R. I., J. Am. Chem. Soc. 93, 1623 (1971).Google Scholar
11Koren, G. and Yeh, J. T. C., Appl. Phys. Lett. 44, 1122 (1984).Google Scholar
12Baufay, L., Houle, F. A., and Wilson, R. J., J. Appl. Phys. 61, 4640 (1987).CrossRefGoogle Scholar
13Tromp, R. M., Legoues, F., and Ho, P. S., J. Vac. Sci. Technol. A3, 782 (1985).Google Scholar
14Zeiger, H. J., Fan, J. C. C., Palm, B. J., Chapman, R. L., and Gale, R. P., Phys. Rev. B 25, 4002 (1982).Google Scholar
15Young, J. F., Preston, J. S., van Driel, H. M., and Sipe, J. E., Phys. Rev. B 27, 1155 (1983).Google Scholar