Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T09:49:04.338Z Has data issue: false hasContentIssue false

Effect of surface roughening on liquid-solid interface velocity

Published online by Cambridge University Press:  31 January 2011

Peter M. Richards
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-5800
Get access

Abstract

The difference in density between liquid and solid is shown to be altered at the interface of a rough surface. Since it has been argued previously by the author that density difference plays a major role in interface velocity, I conclude that the rough (100) surface of silicon can have both a larger slope and less asymmetry in the freezing-melting velocity versus temperature relation than does the smooth (111) surface. This may provide partial explanation for some recent experimental results and apparent controversy.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Larson, B.C.Tischler, J.Z. and Mills, D.M.J. Mater. Res. 1 144 (1986).CrossRefGoogle Scholar
2Larson, B.C.Tischler, J.Z. and Mills, D.M.Mater. Res. Soc. Symp. Proc. 100 513 (1988).CrossRefGoogle Scholar
3Tsao, J. Y.Aziz, M. J.Peercy, P. S. and Thompson, M. O.Mater. Res. Soc. Symp. Proc. 100 519 (1988).CrossRefGoogle Scholar
4See, for example, Spaepen, F. and Turnbull, D. in Laser Annealing of Semiconductors, edited by Poate, J. M. and J.Mayer, W. (Academic, New York, 1982), Chap. 2.Google Scholar
5Richards, P.M.Phys. Rev. B38 2727 (1988).CrossRefGoogle Scholar
6Tischler, J. Z.Larson, B.C. and Mills, D.M.Appl. Phys. Lett. 52 1785 (1988).CrossRefGoogle Scholar
7Landman, U.Luedtke, W. D.Ribarsky, M. W.Barnett, R. N. and Cleveland, C.L.Phys. Rev. B37 4637 (1988).CrossRefGoogle Scholar
8Luedtke, W. D.Landman, U.Ribarsky, M. W.Barnett, R. N. and Cleveland, C. L.Phys. Rev. B37 4647 (1988).CrossRefGoogle Scholar
9Landman, U.Luedtke, W. D.Barnett, R.N.Cleveland, C.L.Ribarsky, M.W.Arnold, E.Ramesh, S.Baumgart, H.Martinez, A. and Khan, B.Phys. Rev. Lett. 56 155 (1986); F.F. Abraham and J. Q. Broughton Phys. Rev. Lett. 56 734 (1986).CrossRefGoogle Scholar
10Harrowell, P. and Oxtoby, D. W.Phys. Rev. B33 6293 (1986); see, in particular, Eq. (3.27).CrossRefGoogle Scholar
11Harrowell, P. and Oxtoby, D. W.J. Chem. Phys. 86 2932 (1987).CrossRefGoogle Scholar
12See, for example, Stanley, H. E.Introduction to Phase Transitions and Critical Phenomena (Oxford, New York, 1971), Sect. 7.2.Google Scholar
13Tsao, J. Y.Aziz, M. J.Peercy, P. S. and Thompson, M. O.Mater. Res. Soc. Symp. 74 117 (1987).CrossRefGoogle Scholar
14Muller-Krumbharr, H., in “Monte Carlo Methods in Statistical Physics”, Topics in Current Physics, edited by Binder, K. (Springer, New York, 1979), Vol. 7, Ch. 7, and references therein.Google Scholar
15Gilmer, G. H.Mater. Res. Soc. Symp. 13 249 (1983).CrossRefGoogle Scholar