Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-13T23:38:44.090Z Has data issue: false hasContentIssue false

Effect of Sol-Gel Thin Coatings on the Fracture Strength of Glass

Published online by Cambridge University Press:  03 March 2011

Estíbaliz Sánchez-González
Affiliation:
Departamento de Electrónica e Ingeniería Electromecánica, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
Pedro Miranda
Affiliation:
Departamento de Electrónica e Ingeniería Electromecánica, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
Antonio Díaz-Parralejo
Affiliation:
Departamento de Electrónica e Ingeniería Electromecánica, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
Antonia Pajares
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
Fernando Guiberteau
Affiliation:
Departamento de Electrónica e Ingeniería Electromecánica, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
Get access

Abstract

The effect of ZrO2–3 mol/ Y2O3 sol-gel thin coatings on the fracture of soda-lime glass is investigated. For this purpose, a recently developed strength measurement procedure—based on making a brittle material flex on top of a soft substrate by applying a load with a spherical indenter to the top surface of the system—is used. Results suggest significant variation of both the average fracture strength and the Weibull modulus on coated glass slides. It is suggested that the origin of such variations can be attributed to a certain chemical degradation of the glass during the coating process. This chemical attack produces a highly homogeneous flaw population on the glass surface which governs its fracture behavior. Implications of this work for the practical use of coated glass layers are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ohring, M.The Materials Science of Thin Films (Academic Press, London, 1992).Google Scholar
2Brinker, C.J. and Scherer, G.W.Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1989).Google Scholar
3Wright, J.D. and Sommerdijk, N.A.J.M.Sol-Gel Materials Chemistry and Applications. (Taylor and Francis, London, 2001).Google Scholar
4Uhlmann, D.R., Suratwala, T., Davidson, K., Boulton, J.M. and Teowee, G., J. Non-Cryst. Solids. 218 113 (1997).CrossRefGoogle Scholar
5Atik, M., Kha, C.R., Delimaneto, P., Avaca, L.A., Aegerter, M.A., Zarzycki, J.. J. Mater. Sci. 25 178 (1995).Google Scholar
6Boysen, W., Frattini, A., Pellegri, N. and de Sanctis, O., Surf. Coat. Technol. 122 14 (1999).CrossRefGoogle Scholar
7McDonagh, C., Bowe, P., Mongey, K. and MacCraith, B.D., J. Non-Cryst. Solids 306 138 (2002).CrossRefGoogle Scholar
8Yu, Y., Wang, X., Cao, Y. and Hu, X., Appl. Surf. Sci. 172 260 (2001).CrossRefGoogle Scholar
9Caruso, R., Díaz-Parralejo, A., Miranda, P. and Guiberteau, F., J. Mater. Res. 16 2391 (2001).CrossRefGoogle Scholar
10Miranda, P., Pajares, A., Guiberteau, F., Cumbrera, F.L., Lawn, B.R.. Acta Mater. 49 3719 (2001).CrossRefGoogle Scholar
11Kim, H-W., Deng, Y., Miranda, P., Pajares, A., Kim, D.K., Kim, H-E., Lawn, B.R.. J. Am. Ceram. Soc. 84 2377 (2001).CrossRefGoogle Scholar
12Lee, C-S., Kim, D.K., Sánchez, J., Miranda, P., Pajares, A. and Lawn, B.R., J. Am. Ceram. Soc. 85 2019 (2002).CrossRefGoogle Scholar
13Fabes, B.R. and Uhlmann, D.R., J. Am. Ceram. Soc. 73 978 (1990).CrossRefGoogle Scholar
14Wang, F.H., Hand, R.J., Ellis, B. and Seddon, A.B., Phys. Chem. Glasses 36 201 (1995).Google Scholar
15Kingston, J.G.R. and Hand, R.J., Phys. Chem. Glasses 41 1 (2000).Google Scholar
16Swanepoel, R., J. Phys. E.: Sci. Instrum. 16 1214 (1983).CrossRefGoogle Scholar
17Chai, H., Lawn, B.R., Wuttiphan, S.. J. Mater. Res. 14 3805 (1999).CrossRefGoogle Scholar
18Rhee, Y-W., Kim, H-W., Deng, Y., Lawn, B.R.. J. Am. Ceram. Soc. 18 1066 (2001).CrossRefGoogle Scholar
19Lawn, B.R., Lee, K.S., Chai, H., Pajares, A., Kim, D.K., Wuttiphan, S., Peterson, I.M. and Hu, X., Adv. Eng. Mater. 2 745 (2000).3.0.CO;2-E>CrossRefGoogle Scholar
20Miranda, P., Pajares, A., Guiberteau, F., Cumbrera, F.L. and Lawn, B.R., J. Mater. Res. 16 115 (2001).CrossRefGoogle Scholar
21Weibull, W.J., Appl. Mech. 18 293 (1951).CrossRefGoogle Scholar
22Lawn, B.R., in Fracture of Brittle Solids (Cambridge University Press, UK, 1998), p. 338.Google Scholar
23Chuang, T-J. and Lee, S., J. Mater. Res. 15 2780 (2000).CrossRefGoogle Scholar
24Ernsberger, F.M., Proc. R. Soc. London A 257, 213 (1960).Google Scholar