Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-26T21:32:49.242Z Has data issue: false hasContentIssue false

Effect of sintering additive composition on the thermal conductivity of silicon nitride

Published online by Cambridge University Press:  31 January 2011

Y. Okamoto
Affiliation:
Materials Research Laboratory, Nissan Motor Co., Ltd., 1, Natsushima-cho, Yokosuka-shi,Kanagawa 237–8523, Japan
N. Hirosaki
Affiliation:
Materials Research Laboratory, Nissan Motor Co., Ltd., 1, Natsushima-cho, Yokosuka-shi,Kanagawa 237–8523, Japan
M. Ando
Affiliation:
Materials Research Laboratory, Nissan Motor Co., Ltd., 1, Natsushima-cho, Yokosuka-shi,Kanagawa 237–8523, Japan
F. Munakata
Affiliation:
Materials Research Laboratory, Nissan Motor Co., Ltd., 1, Natsushima-cho, Yokosuka-shi,Kanagawa 237–8523, Japan
Y Akimune
Affiliation:
Materials Research Laboratory, Nissan Motor Co., Ltd., 1, Natsushima-cho, Yokosuka-shi,Kanagawa 237–8523, Japan
Get access

Abstract

The thermal conductivity of silicon nitride prepared with varying sintering additive compositions was studied. Samples of Si3N4 + 0.5 mol% Y2O3 + 0.5 mol% Nd2O3 and a further additional agent were gas pressure sintered at 2173 K. MgO or Al2O3 was employed as the additional agent. While both agents improved sinterability, the former promoted grain growth and the latter suppressed it. Thermal conductivity increased with increasing MgO content, and a maximum value of 128 Wm-1 K-1 was attained when 2 mol% MgO was added. In contrast, addition of Al2O3 degrades thermal conductivity. This is probably due to the suppression of grain growth and the dissolution of Al2O3 into Si3N4 grains.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kuriyama, M., Inomata, Y., Kujima, T., and Hasegawa, Y., Am. Ceram. Soc. Bull. 57, 11191122 (1978).Google Scholar
2.Hirai, T., Hayashi, S., and Niihara, K., Am. Ceram. Soc. Bull. 57, 11261130 (1978).Google Scholar
3.Ziegler, G., in Progress in Nitrogen Ceramics, edited by Riley, F. L. (Martinus Nijhoff, Boston, MA, 1983), pp. 565588.CrossRefGoogle Scholar
4.Hayashi, K., Tsujimoto, S., Nishikawa, T., and Imamura, Y., Yogyo-Kyokai-Shi 94, 595600 (1986).CrossRefGoogle Scholar
5.Watari, K., Seki, Y., and Ishizaki, K., Seramikkusu-Rombunshi 97, 5662 (1989).CrossRefGoogle Scholar
6.Watari, K., Seki, Y., and Ishizaki, K., Seramikkusu-Rombunshi 97, 174181 (1989).CrossRefGoogle Scholar
7.Takeda, Y., Nakamura, K., Maeda, K., and Ura, M., Advanced Ceram. Mater. 1, 162165 (1986).CrossRefGoogle Scholar
8.Kuramoto, N., Taniguchi, H., and Aso, I., Proc. IEEE 74, 424429 (1986).Google Scholar
9.Slack, G. A., J. Phys. Chem. Solids 34, 321335 (1973).CrossRefGoogle Scholar
10.Haggerty, J. S. and Lightfoot, A., Ceram. Eng. Sci. Proc. 16, 475487 (1995).CrossRefGoogle Scholar
11.Hirosaki, N., Okamoto, Y., Ando, M., Munakata, F., and Akimune, Y., J. Ceram. Soc. Jpn. 104, 4953 (1996).CrossRefGoogle Scholar
12.Hirosaki, N., Akimune, Y., and Mitomo, M., J. Ceram. Soc. Jpn. 101, 12391243 (1993).CrossRefGoogle Scholar
13.Deeley, G. G., Herbert, J. M., and Moore, N. C., Powder Metall. 8, 145151 (1961).CrossRefGoogle Scholar
14.Tsuge, A. and Nishida, K., Am. Ceram. Soc. Bull. 57, 424426, 31 (1978).Google Scholar
15.Gazza, G. E., J. Am. Ceram. Soc. 56, 662 (1973).CrossRefGoogle Scholar
16.Hirosaki, N. and Okada, A., Seramikkusu-Rombunshi 97, 673 (1989).CrossRefGoogle Scholar
17.Hwang, C-J. and Tien, T-Y., in Materials Science Forum (Trans Tech Publications, Aedermannsdorf, Switzerland, 1989), Vol. 47, pp. 84109.Google Scholar
18.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed. (Wiley, New York, 1976), p. 626.Google Scholar
19.Gerlich, D. and Slack, G. A., J. Phys. Chem. Solids 46, 433436 (1985).CrossRefGoogle Scholar
20.Hirosaki, N., Inoue, Y., and Akimune, Y., Seramikkusu-Rombunshi 100, 720724 (1992).CrossRefGoogle Scholar
21.Parrott, J. E. and Stuckes, A. D., Thermal Conductivity of Solids (Pion Limited, London, 1975), pp. 129133.Google Scholar