Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T22:12:20.873Z Has data issue: false hasContentIssue false

Effect of internal fission-fragment irradiation on critical currents and flux creep in Bi–Sr–Ca–Cu–O superconductors doped with UO2

Published online by Cambridge University Press:  31 January 2011

F.E. Luborsky
Affiliation:
General Electric Research and Development Center, Schenectady, New York 12301
R.H. Arendt
Affiliation:
General Electric Research and Development Center, Schenectady, New York 12301
R.L. Fleischer
Affiliation:
General Electric Research and Development Center, Schenectady, New York 12301
H.R. Hart Jr.
Affiliation:
General Electric Research and Development Center, Schenectady, New York 12301
J.E. Tkaczyk
Affiliation:
General Electric Research and Development Center, Schenectady, New York 12301
D.A. Orsini
Affiliation:
General Electric Research and Development Center, Schenectady, New York 12301
Get access

Abstract

Fission fragment damage was introduced into samples of Bi2Sr2CaCu2Ox and Bi1.7Pb0.3Sr2Ca2Cu3Oy, doped with various levels of UO2, by irradiation with thermal neutrons. The critical temperatures were unchanged. Concurrent with an increase in intragranular Jc previously reported, a decrease in flux creep was observed. The apparent pinning potential for creep at 10 K and 0.8 T increased on irradiation by about two to three times for both the 2212 and 2223 compounds. This increased apparent pinning potential is attributed to the strong pinning introduced by the damage caused by the travel of the fission fragments through the crystal. Pinning potential after irradiation increased with an increase in the amount of UO2 in the sample. The increase in bulk pinning potential on irradiation was proportional to the increase in intragranular critical currents on irradiation, qualitatively as expected theoretically.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fleischer, R.L., Hart, H.R. Jr, Lay, K.W., and Luborsky, F.E., Phys. Rev. B 40, 2163 (1989).CrossRefGoogle Scholar
2Summers, G. P., Chrisey, D. B., Maisch, W. G., Strauss, G. H., Burke, E. A., Nastasi, M., and Tesmer, J. R., IEEE Trans. Nucl. Sci. 36, 1840 (1989).CrossRefGoogle Scholar
3Summers, G.P., Burke, E.A., Chrisey, D.B., Nastasi, M., and Tesmer, J.R., Appl. Phys. Lett. 55, 1469 (1989).CrossRefGoogle Scholar
4Weber, H. W. and Crabtree, G. W., in Studies of High Temperature Superconductors, edited by Narlikar, A. V., (Nova Science Publishing, New York, New York, 1992), Vol. 9, p. 37.Google Scholar
5Terai, T., Furuta, T., Masegi, T., Kusagaya, K., and Takahashi, Y., Jpn. J. Appl. Phys. 30, L728 (1991).CrossRefGoogle Scholar
6Kohiki, S., Hatta, S., Setsume, K., and Wasa, K., Appl. Phys. Lett. 56, 298 (1990).CrossRefGoogle Scholar
7Kohiki, S., Hatta, S., Kamada, T., Enokihara, A., Satoh, T., Setsumo, K., Wasa, K., Higashi, Y., Fukushima, S., and Gohski, Y., Appl. Phys. A50, 509 (1990).CrossRefGoogle Scholar
8Lessure, H. S., Simizu, S., Baumert, B.A., Sankar, S. G., McHenry, M.E., Maley, M. P., Cost, J. R., and Willis, J. O., IEEE Trans. Magn. 27, 1043 (1991).CrossRefGoogle Scholar
9Schindler, W., J. Appl. Phys. 70, 1877 (1991).CrossRefGoogle Scholar
10Luborsky, F. E., Arendt, R. H., Fleischer, R. L., Hart, H. R. Jr, Lay, K. W., Tkaczyk, J. E., and Orsini, D., J. Mater. Res. 6, 28 (1991).CrossRefGoogle Scholar
11Hart, H.R. Jr, Luborsky, F.E., Arendt, R.H., Fleischer, R.L., Tkaczyk, J.E., and Orsini, D. A., IEEE Trans. Magn. 27, 1375 (1991).CrossRefGoogle Scholar
12Luborsky, F. E., Arendt, R. H., Fleischer, R. L., Hart, H. R. Jr, Lay, K. W., Tkaczyk, J.E., and Orsini, D.A., J. Appl. Phys. 70, 5756 (1991).CrossRefGoogle Scholar
13Hagen, C. W. and Griessen, R. P., Phys. Rev. Lett. 6, 2857 (1989).CrossRefGoogle Scholar
14Beasley, M.R., Labusch, R., and Webb, W.W., Phys. Rev. 181, 682 (1969).CrossRefGoogle Scholar
15Schawlow, A.L. and Devlin, G.E., Phys. Rev. 113, 120 (1959).CrossRefGoogle Scholar
16Fetter, A. L. and Hohenberg, P. C., Super-conductivity, edited by Parks, R. D. (Marcel Dekker, New York, 1969), Vol. 2, pp. 817923.Google Scholar
17Anderson, P.W., Phys. Rev. Lett. 9, 309 (1962).CrossRefGoogle Scholar
18Xu, Y., Suenaga, M., Moodenbaugh, A. R., and Welch, D. O., Phys. Rev. B 40, 10882 (1989).CrossRefGoogle Scholar
19Hagen, C. W., Griessen, R. P., and Salomons, E., Physica C 157, 199 (1989).CrossRefGoogle Scholar
20Campbell, I. A., Fruchter, L., and Cabanel, R., Phys. Rev. Lett. 64, 1561 (1990).CrossRefGoogle Scholar