Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T13:51:02.429Z Has data issue: false hasContentIssue false

Effect of elevated substrate temperature on growth, properties, and structure of indium tin oxide films prepared by reactive magnetron sputtering

Published online by Cambridge University Press:  31 January 2011

A. Rogozin*
Affiliation:
Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, 01314 Dresden, Germany
M. Vinnichenko
Affiliation:
Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, 01314 Dresden, Germany
N. Shevchenko
Affiliation:
Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, 01314 Dresden, Germany
L. Vazquez
Affiliation:
Instituto de Ciencia de Materiales de Madrid (CSIC), C\ Sor Juana Inés de la Cruz N° 3, 28049 Madrid, Spain
A. Mücklich
Affiliation:
Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, 01314 Dresden, Germany
U. Kreissig
Affiliation:
Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, 01314 Dresden, Germany
R.A. Yankov
Affiliation:
Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, 01314 Dresden, Germany
A. Kolitsch
Affiliation:
Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, 01314 Dresden, Germany
W. Möller
Affiliation:
Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, 01314 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: A.Rogozin@fzd.de
Get access

Abstract

The paper correlates the growth and structure formation with the properties of indium-tin-oxide (ITO) films fabricated by pulsed reactive magnetron deposition onto amorphous substrates held at elevated temperatures ranging from room temperature to 510 °C. The evolution of the microstructure is consistent with the well-known structure zone model. The temperature dependence of the film texture is described with consideration of the interplay between the shadowing and surface-diffusion processes. It is shown that deposition at elevated temperatures lowers the crystallization threshold and is more effective in reducing resistivity than the postdeposition vacuum annealing at comparable temperatures. The films grown at a substrate temperature of 400 and 510 °C have the lowest resistivity of 1.2 × 10−4 Ω cm, the highest free electron density of 1.2 to 1.0 × 1021 cm−3, and mobility of 35–42 cm2 V−1 s−1 and exhibit the strongest (222) texture with the largest grain size.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lewis, B.G.Paine, D.C.: Applications and processing of transparent conducting oxides. MRS Bull. 25(8), 22 2000Google Scholar
2Hamberg, I.Granqvist, C.G.: Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123 1986Google Scholar
3Tahar, R.B.H., Ban, T., Ohya, Y.Takahashi, Y.: Tin doped indium oxide thin films: Electrical properties. J. Appl. Phys. 83, 2631 1998Google Scholar
4Kamei, M., Shigesato, Y., Yasui, I., Taga, N.Takaki, S.: Comparative study of heteroepitaxial and polycrystalline tin-doped indium oxide films. J. Non-Cryst. Solids 218, 267 1997Google Scholar
5Wulff, H., Quaas, M.Steffen, H.: Investigation of plasma-deposited ITO films by GIXR and GIXRD. Thin Solid Films 355–356, 395 1999Google Scholar
6Kamei, M., Shigesato, Y.Takaki, S.: Origin of characteristic grain-subgrain structure of tin-doped indium oxide films. Thin Solid Films 259, 38 1995Google Scholar
7Frank, G.Köstlin, H.: Electrical properties and defect model of tin-doped indium oxide layers. Appl. Phys. A: Solids Surf. 27, 197 1982Google Scholar
8Gonzalez, G.B., Mason, T.O., Quintana, J.P., Warschkow, O., Ellis, D.E., Hwang, J-H., Hodges, J.P.Jorgensen, J.D.: Defect structure studies of bulk and nano-indium-tin oxide. J. Appl. Phys. 96, 3912 2004Google Scholar
9Ederth, J., Johnsson, P., Niklasson, G.A., Hoel, A., Hultaker, A., Heszler, P., Granqvist, C.G., van Doorn, A.R., Jongerius, M.J.Burgard, D.: Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles. Phys. Rev. B 68, 155410 2003Google Scholar
10Fujivara, H.Kondo, M.: Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption. Phys. Rev. B 71, 075109 2005Google Scholar
11Rogozin, A., Shevchenko, N., Vinnichenko, M., Prokert, F., Cantelli, V., Kolitsch, A.Moeller, W.: Real-time evolution of the indium tin oxide film properties and structure during annealing in vacuum. Appl. Phys. Lett. 85, 212 2004Google Scholar
12Rogozin, A., Shevchenko, N., Vinnichenko, M., Seidel, M., Kolitsch, A.Möller, W.: Annealing of indium tin oxide films by electric current: Properties and structure evolution. Appl. Phys. Lett. 89, 061908 2006Google Scholar
13Rogozin, A.I., Vinnichenko, M.V., Kolitsch, A.Moeller, W.: Effect of deposition parameters on properties of ITO films prepared by reactive middle frequency pulsed dual magnetron sputtering. J. Vac. Sci. Technol., A 22, 349 2004Google Scholar
14Rogozin, A., Vinnichenko, M., Shevchenko, N., Kolitsch, A.Moeller, W.: Plasma influence on the properties and structure of indium tin oxide films produced by reactive middle frequency pulsed magnetron sputtering. Thin Solid Films 496, 197 2006Google Scholar
15Kreissig, U., Gago, R., Vinnichenko, M., Fernández-Hidalgo, P., Martín-Palma, R.J.Martínez-Duart, J.M.: Heavy-ion ERDA and spectroscopic ellipsometry characterization of a SiOC:H layered structure as functional coating on polymeric lenses. Nucl. Instr. Methods Phys. Res. B 219–220, 908 2004Google Scholar
16Cheng, H-E.Hon, M-H.: Texture formation in titanium nitride films prepared by chemical vapour deposition. J. Appl. Phys. 79, 8047 1996Google Scholar
17JCPDS-ICDD No. 6-416. Joint Committee on Powder Diffraction Standards ASTM Philadelphia, PA 1991Google Scholar
18Bravman, J.C.Sinclair, R.: The preparation of cross-section specimens for transmission electron-microscopy. J. Elect. Mic. Tech. 1, 53 1984Google Scholar
19Choi, S.K.Lee, J.I.: Effect of film density on electrical properties of indium oxide films deposited by dc magnetron sputtering. J. Vac. Sci. Technol., A 19, 2043 2001Google Scholar
20Fukarek, W.Kersten, H.: Application of dynamic in situ ellipsometry to the deposition of tin-doped indium oxide films by reactive direct-current magnetron sputtering. J. Vac. Sci. Technol., A 12, 523 1994Google Scholar
21Berg, S.Nyberg, T.: Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films 476, 215 2005Google Scholar
22Thornton, J.A.: The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol., A 4, 3059 1986Google Scholar
23Petrov, I., Barna, P.B., Hultman, L.Greene, J.E.: Microstructural evolution during film growth. J. Vac. Sci. Technol., A 21, 1 2003Google Scholar
24Muranaka, S.: Crystallization of amorphous In2O3 films during film growth. Jpn. J. Appl. Phys. 30, L2062 1991Google Scholar
25Muranaka, S., Bando, Y.Takada, T.: Influence of substrate temperature and film thickness on the structure of reactively evaporated In2O3. Thin Solid Films 151, 355 1987Google Scholar
26Ow-Yang, C.W., Spinner, D., Shigesato, Y.Paine, D.C.: A time-resolved reflectivity study of the amorphous-to-crystalline transformation kinetics in dc-magnetron sputtered indium tin oxide. J. Appl. Phys. 83, 145 1998Google Scholar
27Bronsveld, P.C.P., Rath, J.K., Schropp, R.E.I., Mates, T., Fejfar, A., Rezek, B.Kočka, J.: Internal structure of mixed phase hydrogenated silicon thin films made at 39 degrees C. Appl. Phys. Lett. 89, 051922 2006Google Scholar
28Geyer, U., von Hülsen, U.Thiyagarajan, P.: Surface roughening and columnar growth of thin amorphous CuTi films. Appl. Phys. Lett. 70, 1691 1997Google Scholar
29Nishimura, E., Ohkawa, H., Song, P.K.Shigesato, Y.: Microstructures of ITO films deposited by d.c. magnetron sputtering with H2O introduction. Thin Solid Films 445, 235 2003Google Scholar
30Ishibashi, S., Higuchi, Y., Ota, Y.Nakamura, K.: Low resistivity indium-tin oxide transparent conductive films. I. Effect of introducing H2O gas or H2 gas during direct current magnetron sputtering. J. Vac. Sci. Technol., A 8, 1399 1990Google Scholar
31Greene, J.E., Sundgren, J-E., Hultman, L., Petrov, I.Bergstrom, D.B.: Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering. Appl. Phys. Lett. 67, 2928 1995Google Scholar
32Jung, Y.S.Lee, S.S.: Development of indium tin oxide film texture during DC magnetron sputtering deposition. J. Cryst. Growth 259, 343 2003Google Scholar
33Ellmer, K., Mientus, R.Rossner, H.: In situ investigation by energy dispersive x-ray diffraction (EDXRD) of the growth of magnetron sputtered ITO films. Surf. Coat. Technol. 142–144, 1094 2001Google Scholar
34Quaas, M., Steffen, H., Hippler, R.Wulff, H.: Influence of microstructure on oxygen diffusion in plasma-deposited In/Sn films. Thin Solid Films 420–421, 306 2002Google Scholar
35Yamada, N., Yasui, I., Shigesato, Y., Li, H., Ujihira, Y.Nomura, K.: Effect of substrate temperature on the structural, electrical and optical properties of ITO films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys. 39, 4158 2000Google Scholar
36Paine, D.C., Whitson, T., Janiac, D., Beresford, R., Ow Yang, C.Lewis, B.: A study of low temperature crystallization of amorphous thin film indium–tin–oxide. J. Appl. Phys. 85, 8445 1999Google Scholar
37Ohta, H., Orita, M., Hirano, M., Tanji, H., Kawazoe, H.Hosono, H.: Highly electrically conductive indium–tin–oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed laser deposition. Appl. Phys. Lett. 76, 2740 2000Google Scholar
38Suzuki, A., Matsushita, T., Aoki, T., Yoneyama, Y.Okuda, M.: Pulsed laser deposition of transparent conducting indium tin oxide films in magnetic field perpendicular to plume. Jpn. J. Appl. Phys. 40, L401 2001Google Scholar
39Suzuki, A., Matsushita, T., Aoki, T.Okuda, M.: Highly conducting transparent indium tin oxide films prepared by pulsed laser deposition. Thin Solid Films 411, 23 2002Google Scholar
40Nath, P., Bunshah, R.F., Basol, B.M.Staffsud, O.M.: Electrical and optical properties of In2O3: Sn films prepared by activated reactive evaporation. Thin Solid Films 72, 463 1980Google Scholar
41Rauf, I.A.: Low resistivity and high mobility tin-doped indium oxide films. Mater. Lett. 18, 123 1993Google Scholar
42Bellingham, J.R., Phillips, W.A.Adkins, C.J.: Intrinsic performance limits in transparent conducting oxides. J. Mater. Sci. Lett. 11, 263 1992Google Scholar
43Ray, S., Banerjee, R., Basu, N., Batabyal, A.K.Barua, A.K.: Properties of tin doped indium oxide thin films prepared by magnetron sputtering. J. Appl. Phys. 54, 3497 1983Google Scholar
44Coutts, T.J., Young, D.L.Li, X.: Characterization of transparent conducting oxides. MRS Bull. 25(8), 58 2000Google Scholar